

Some Advances of Neural Network Architecture in Image Classification

Wei Han

Data Mining Lab, Big Data Research Center, UESTC Email: weihan@std.uestc.edu.cn

Outline

Manual Designed

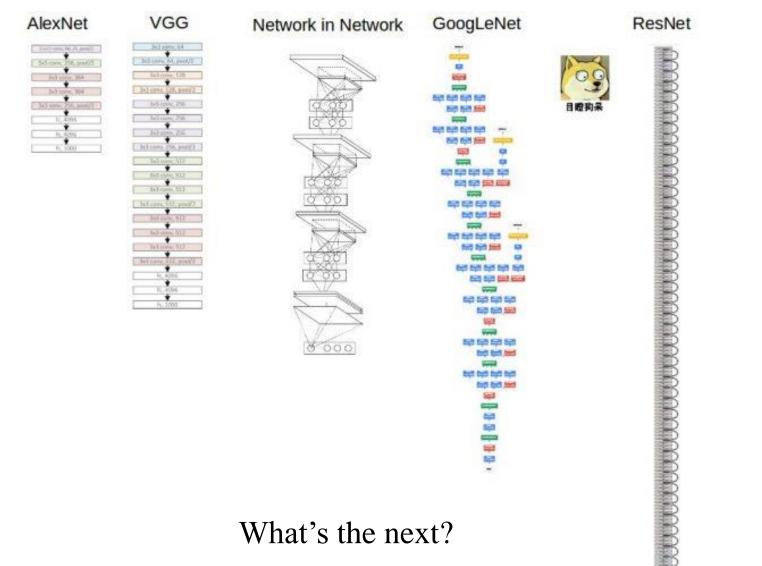
- Inception
- DenseNet
- DPN
- ResNeXt
- SENet
- EfficientNet
- Fixing Resolution Discrepancy

NAS

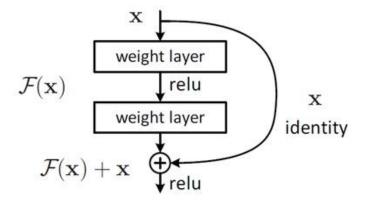
- NASNet
- PNASNet
- AmoebaNet
- DARTS

Background

Development of DNN:



• Architecture



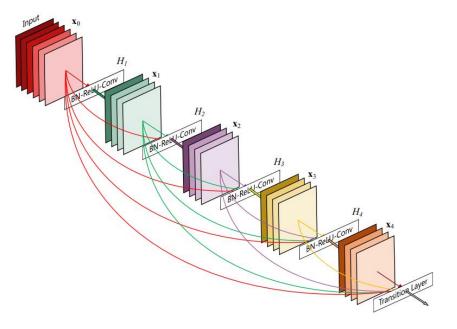
• Why it works?

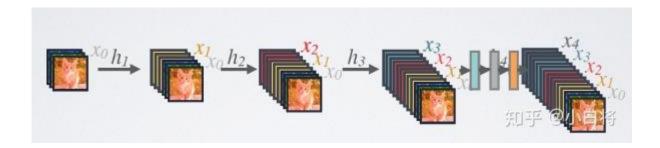
$$x_L = x_l + \sum_{i=l}^{L-1} F(x_i, W_i)$$

$$rac{\partial loss}{\partial x_l} = rac{\partial loss}{\partial x_L} \cdot rac{\partial x_L}{\partial x_l} = rac{\partial loss}{\partial x_L} \cdot \left(1 + rac{\partial}{\partial x_L}\sum_{i=l}^{L-1}F(x_i,W_i)
ight)$$

DenseNet

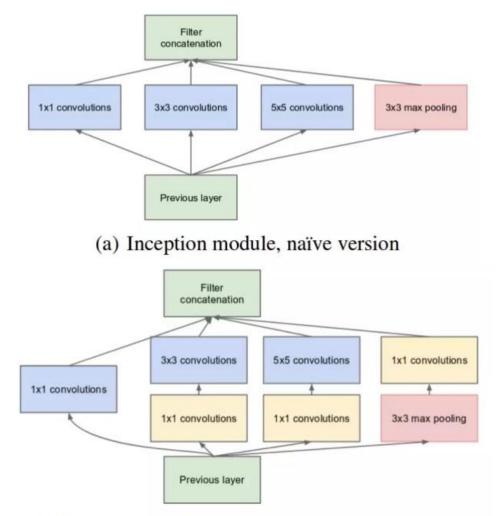
• Feature reuse





• Bound

• Inception v1 (GoogLeNet)



(b) Inception module with dimension reductions

• 1*1 convolution

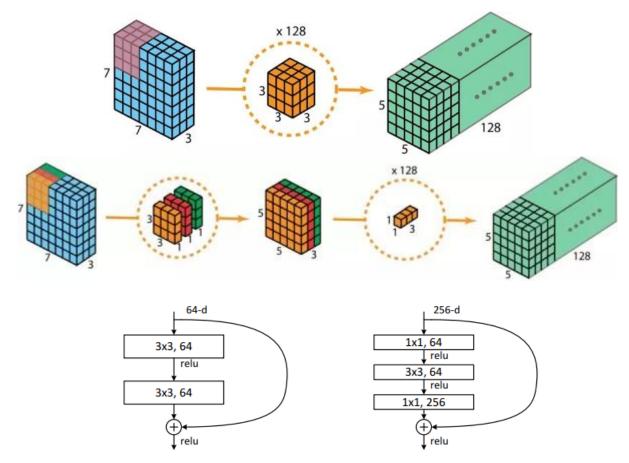
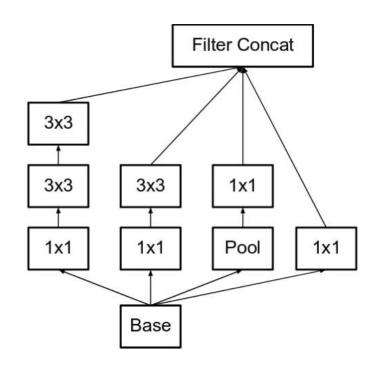
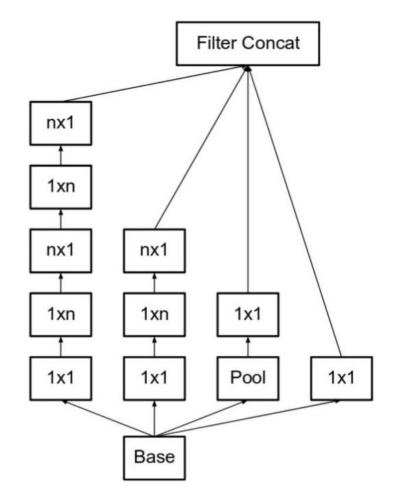


Figure 5. A deeper residual function \mathcal{F} for ImageNet. Left: a building block (on 56×56 feature maps) as in Fig. 3 for ResNet-34. Right: a "bottleneck" building block for ResNet-50/101/152.

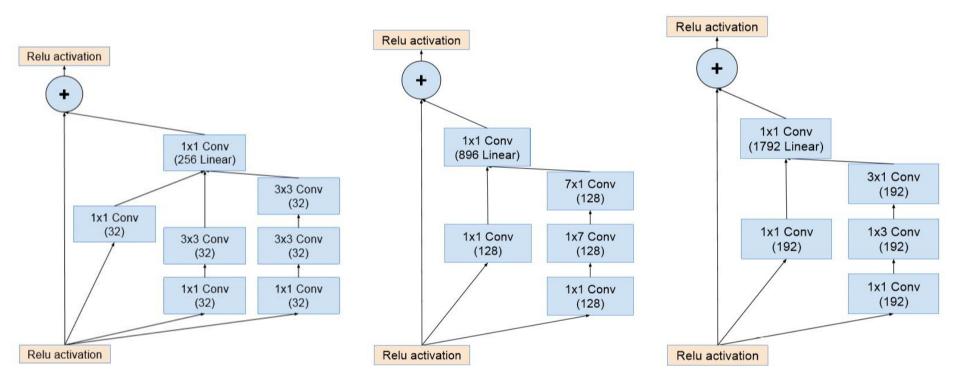
• Inception v2 & v3





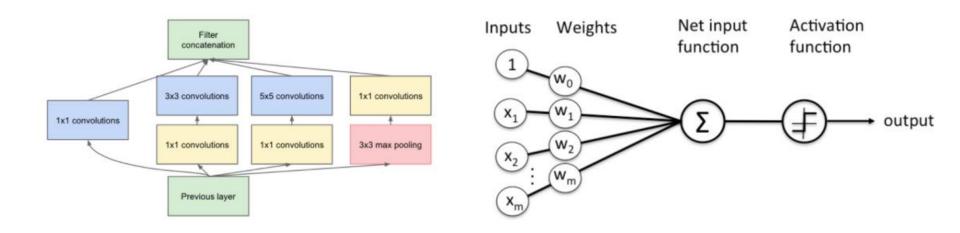
- Inception v2 & v3
 - Inception Net v3 incorporated all of the above upgrades stated for Inception v2, and in addition used the following:
 - 1. RMSProp Optimizer.
 - 2. Factorized 7x7 convolutions.
 - 3. BatchNorm in the Auxillary Classifiers.
 - Label Smoothing (A type of regularizing component added to the loss formula that prevents the network from becoming too confident about a class. Prevents over fitting).

• Inception v4



あ
 あ
 あ
 ま
 S IS MORE
 あ
 数
 居
 挖掘
 弦
 空
 な
 あ
 な
 あ
 お
 あ
 あ
 あ
 あ
 あ
 あ
 あ
 あ
 あ
 あ
 あ
 あ
 あ
 あ
 あ
 あ
 あ
 あ
 あ
 あ

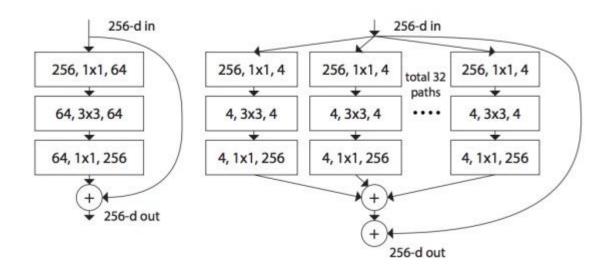
• Split-transform-merge



$$\mathcal{F}(\mathbf{x}) = \sum_{i=1}^{C} \mathcal{T}_i(\mathbf{x})$$

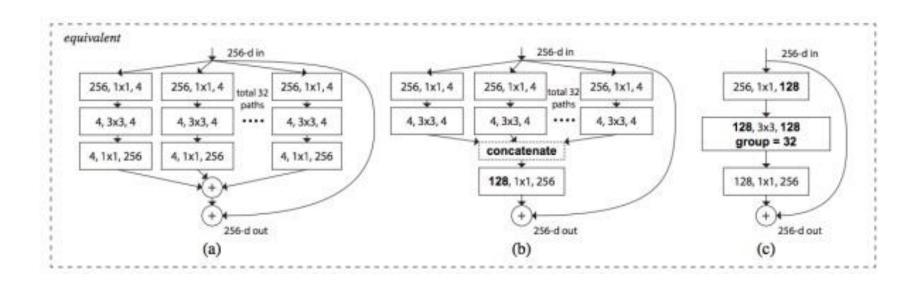
 D B
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S

• Split-transform-merge

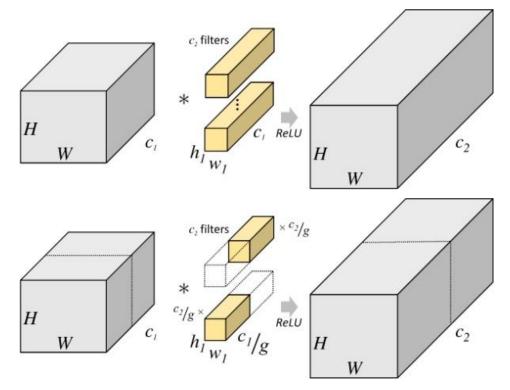


$$\mathbf{y} = \mathbf{x} + \sum_{i=1}^{C} \mathcal{T}_i(\mathbf{x})$$

• split-transform-merge

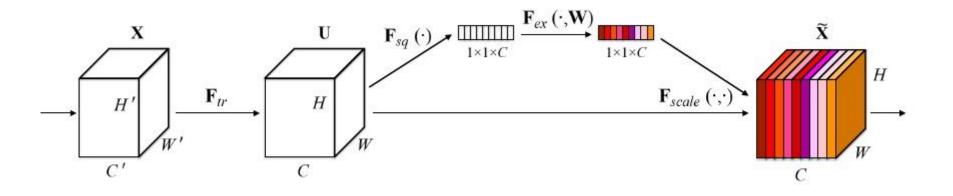


• Group convolution



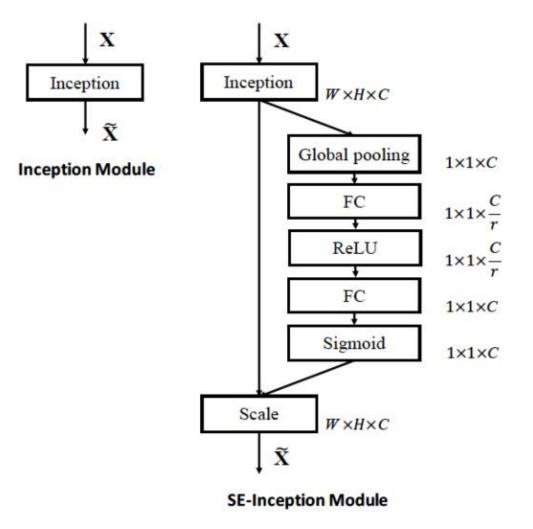
- What helps?
 - Fewer parameters
 - Localization

Squeeze-and-Excitation Networks

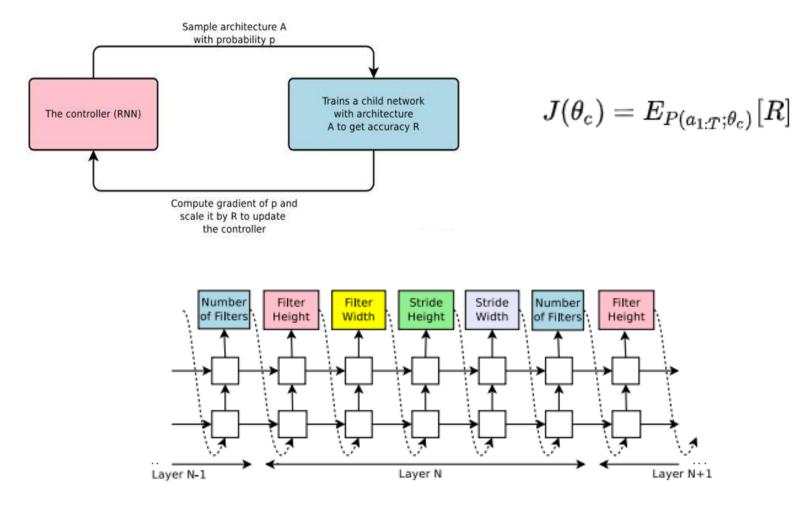


Channel Attention

Squeeze-and-Excitation Networks

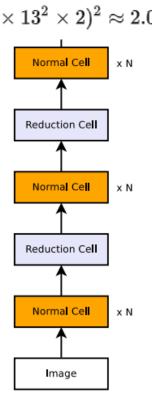


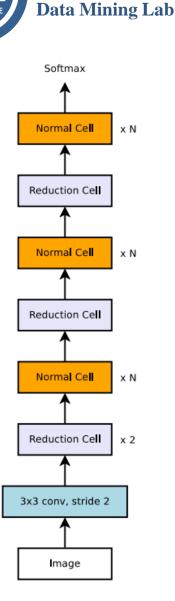
Network Architecture Search



NASNet

- Stacking cells
 - Normal cell
 - Reduction cell
- $\bullet \quad (2^2\times 13^2\times 3^2\times 13^2\times 4^2\times 13^2\times 5^2\times 13^2\times 6^2\times 13^2\times 2)^2\approx 2.0\times 10^{34}$
 - identity
 - 1x7 then 7x1 convolution
 - 3x3 average pooling
 - 5x5 max pooling
 - 1x1 convolution
 - 3x3 depthwise-separable conv
 - 7x7 depthwise-separable conv
 - 1x3 then 3x1 convolution
 - 3x3 dilated convolution
 - 3x3 max pooling
 - 7x7 max pooling
 - 3x3 convolution
 - 5x5 depthwise-seperable conv





数据挖掘实验室

LESS IS MORE

CIFAR10 Architecture ImageNet Architecture

PNASNet

- Smaller search space

Algorithm 1 Progressive Neural Architecture Search (PNAS).

- Inputs: B (max num blocks), E (max num epochs), F (num filters in first layer), K (beam size), N (num times to unroll cell), trainSet, valSet.
- $S_1 = B_1 //$ Set of candidate structures with one block $M_1 = \text{cell-to-CNN}(S_1, N, F) //$ Construct CNNs from cell specifications
- 2² $C_1 = \text{train-CNN}(\mathcal{M}_1, E, \text{trainSet}) // \text{Train proxy CNNs}$ $\mathcal{A}_1 = \text{eval-CNN}(\mathcal{C}_1, \text{valSet}) // \text{Validation accuracies}$ $\pi = \text{fit}(\mathcal{S}_1, \mathcal{A}_1) // \text{Train the reward predictor from scratch}$ for b = 2 : B do
- Set $S_b' = \text{expand-cell}(S_{b-1}) // \text{Expand current candidate cells by one more block} \\ \hat{\mathcal{A}}_b' = \text{predict}(S_b', \pi) // \text{Predict accuracies using reward predictor}$
 - $S_b = \text{top-K}(S'_b, \hat{A}'_b, K) // Most promising cells according to prediction$
 - $\mathcal{M}_b = ext{cell-to-CNN}(\mathcal{S}_b, N, F)$ $\mathcal{C}_b = ext{train-CNN}(\mathcal{M}_b, E, ext{trainSet})$
 - $\mathcal{A}_b = \text{eval-CNN}(\mathcal{C}_b, \text{valSet})$

 $\pi = update-predictor(S_b, A_b, \pi) // Finetune reward predictor with new data$

• Sul $\frac{\text{end for}}{\text{Return top-K}(S_B, A_B, 1)}$

知乎 @刘岩

• RNN

AmoebaNet

DM LESS IS MORE 数据挖掘实验室 Data Mining Lab

• Basic parts

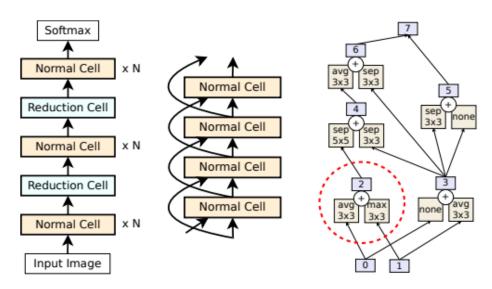
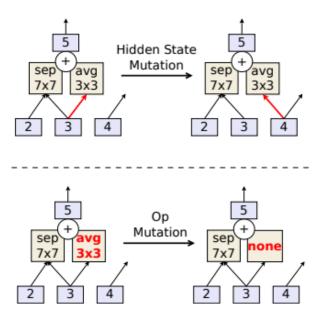


Figure 1: NASNet Search Space [54]. LEFT: the full outer structure (omitting skip inputs for clarity). MIDDLE: detailed view with the skip inputs. RIGHT: cell example. Dotted line demarcates a pairwise combination.

• Aging Evolution

Algorithm 1 Aging Evolution

```
\triangleright The population.
population \leftarrow empty queue
                                  ▷ Will contain all models.
history \leftarrow \emptyset
while |population| < P do
                                     ▷ Initialize population.
    model.arch \leftarrow RANDOMARCHITECTURE()
    model.accuracy \leftarrow TRAINANDEVAL(model.arch)
    add model to right of population
    add model to history
end while
while |history| < C do
                                     \triangleright Evolve for C cycles.
    sample \leftarrow \emptyset
                                        ▷ Parent candidates.
    while |sample| < S do
        candidate \leftarrow random element from population
                   \triangleright The element stays in the population.
        add candidate to sample
    end while
    parent \leftarrow highest-accuracy model in sample
    child.arch \leftarrow MUTATE(parent.arch)
    child.accuracy \leftarrow TRAINANDEVAL(child.arch)
    add child to right of population
    add child to history
    remove dead from left of population
                                                    \triangleright Oldest.
    discard dead
end while
return highest-accuracy model in history
```



数据挖掘实验室

Data Mining Lab

DARTS

• Stacking cells

$$egin{aligned} & \min_lpha \mathcal{L}_{val} \left(w^*(lpha), lpha
ight) \ (3) \ s. t. \quad w^*(lpha) = \mathrm{argmin}_w \, \mathcal{L}_{\mathrm{train}}(w, lpha) \ (4) \end{aligned}$$

$$abla_{lpha} \mathcal{L}_{val} \left(w^*(lpha), lpha
ight)$$
(5)
 $pprox
abla_{lpha} \mathcal{L}_{val} \left(w - \xi
abla_w \mathcal{L}_{ ext{train}}(w, lpha), lpha
ight) , lpha
ight)$ (6)

$$\begin{aligned} & \nabla_{\boldsymbol{\alpha}} \mathcal{L}_{val} \Big(\boldsymbol{\omega} - \boldsymbol{\xi} \nabla_{\boldsymbol{\omega}} \mathcal{L}_{train}(\boldsymbol{\omega}, \boldsymbol{\alpha}), \boldsymbol{\alpha} \Big) \\ = & \nabla_{\boldsymbol{\alpha}} \mathcal{L}_{val}(\boldsymbol{\omega}', \boldsymbol{\alpha}) - \boldsymbol{\xi} \nabla^2_{\boldsymbol{\alpha}, \boldsymbol{\omega}} \mathcal{L}_{train}(\boldsymbol{\omega}, \boldsymbol{\alpha}) \cdot \nabla_{\boldsymbol{\omega}'} \mathcal{L}_{val}(\boldsymbol{\omega}', \boldsymbol{\alpha}) \end{aligned}$$

$$abla^2_{lpha,\omega} \mathcal{L}_{train}(\omega,lpha) \cdot
abla_{\omega'} \mathcal{L}_{val}(\omega',lpha) pprox rac{
abla_{lpha} \mathcal{L}_{train}(\omega^+,lpha) -
abla_{lpha} \mathcal{L}_{train}(\omega^-,lpha)}{2\epsilon}$$

$$f(x_0+hA)=f(x_0)+rac{f'(x_0)}{1!}hA+\ldots \ f(x_0-hA)=f(x_0)-rac{f'(x_0)}{1!}hA+\ldots$$

• Stacking cells

$$abla^2_{lpha,\omega}\mathcal{L}_{train}(\omega,lpha)\cdot
abla_{\omega'}\mathcal{L}_{val}(\omega',lpha)pproxrac{
abla_{lpha}\mathcal{L}_{train}(\omega^+,lpha)-
abla_{lpha}\mathcal{L}_{train}(\omega^-,lpha)}{2\epsilon}$$

$$egin{aligned} f(x_0+hA)&=f(x_0)+rac{f'(x_0)}{1!}hA+&\ldots\ f(x_0-hA)&=f(x_0)-rac{f'(x_0)}{1!}hA+&\ldots \end{aligned}$$

$$f'(x_0)\cdot Approx rac{f(x_0+hA)-f(x_0-hA)}{2h}$$

DARTS

• Stacking cells

Algorithm 1: DARTS – Differentiable Architecture Search

Create a mixed operation $\bar{o}^{(i,j)}$ parametrized by $\alpha^{(i,j)}$ for each edge (i,j) while not converged **do**

1. Update architecture α by descending $\nabla_{\alpha} \mathcal{L}_{val}(w - \xi \nabla_{w} \mathcal{L}_{train}(w, \alpha), \alpha)$

 $(\xi = 0 \text{ if using first-order approximation})$

2. Update weights w by descending
$$\nabla_w \mathcal{L}_{train}(w, \alpha)$$

Derive the final architecture based on the learned α .

Architecture	Test Error (%)		Params	$+\times$	Search Cost	Search	
Architecture	top-1	top-5	(M)	(M)	(GPU days)	Method	
Inception-v1 (Szegedy et al., 2015)	30.2	10.1	6.6	1448	-	manual	
MobileNet (Howard et al., 2017)	29.4	10.5	4.2	569	-	manual	
ShuffleNet $2 \times (g = 3)$ (Zhang et al., 2017)	26.3	-	~5	524	-	manual	
NASNet-A (Zoph et al., 2018)	26.0	8.4	5.3	564	2000	RL	
NASNet-B (Zoph et al., 2018)	27.2	8.7	5.3	488	2000	RL	
NASNet-C (Zoph et al., 2018)	27.5	9.0	4.9	558	2000	RL	
AmoebaNet-A (Real et al., 2018)	25.5	8.0	5.1	555	3150	evolution	
AmoebaNet-B (Real et al., 2018)	26.0	8.5	5.3	555	3150	evolution	
AmoebaNet-C (Real et al., 2018)	24.3	7.6	6.4	570	3150	evolution	
PNAS (Liu et al., 2018a)	25.8	8.1	5.1	588	~225	SMBO	
DARTS (searched on CIFAR-10)	26.7	8.7	4.7	574	4	gradient-based	

Table 3: Comparison with state-of-the-art image classifiers on ImageNet in the mobile setting.

EfficientNet

• Scaling

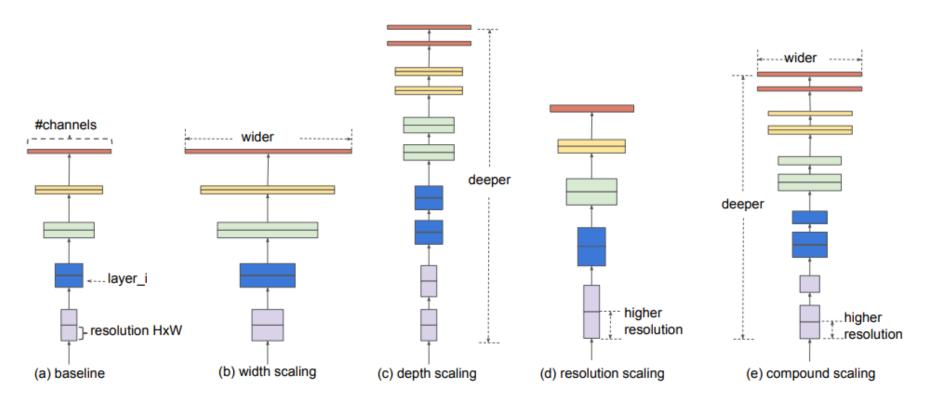


Figure 2. **Model Scaling.** (a) is a baseline network example; (b)-(d) are conventional scaling that only increases one dimension of network width, depth, or resolution. (e) is our proposed compound scaling method that uniformly scales all three dimensions with a fixed ratio.

EfficientNet

• MNAS :)

 $\begin{array}{ll} \max_{d,w,r} & Accuracy \big(\mathcal{N}(d,w,r) \big) \\ s.t. & \mathcal{N}(d,w,r) = \bigcup_{i=1...s} \hat{\mathcal{F}}_i^{d\cdot\hat{L}_i} \big(X_{\langle r\cdot\hat{H}_i,r\cdot\hat{W}_i,w\cdot\hat{C}_i \rangle} \big) \\ & \text{Memory}(\mathcal{N}) \leq \text{target_memory} \\ & \text{FLOPS}(\mathcal{N}) \leq \text{target_flops} \\ \end{array}$

width: $w = \beta^{\phi}$ resolution: $r = \gamma^{\phi}$ s.t. $\alpha \cdot \beta^2 \cdot \gamma^2 \approx 2$ $\alpha \ge 1, \beta \ge 1, \gamma \ge 1$

$$lpha = 1.2$$
, $eta = 1.1$, $\gamma = 1.15$

EfficientNet

Model	Top-1 Acc.	Top-5 Acc.	#Params	Ratio-to-EfficientNet	#FLOPS	Ratio-to-EfficientNet	
EfficientNet-B0	76.3%	93.2%	5.3M	1x	0.39B	1x	
ResNet-50 (He et al., 2016)	76.0%	93.0%	26M	4.9x	4.1B	11x	
DenseNet-169 (Huang et al., 2017)	76.2%	93.2%	14M	2.6x	3.5B	8.9x	
EfficientNet-B1	78.8 %	94.4%	7.8M	1x	0.70B	1x	
ResNet-152 (He et al., 2016)	77.8%	93.8%	60M	7.6x	11B	16x	
DenseNet-264 (Huang et al., 2017)	77.9%	93.9%	34M	4.3x	6.0B	8.6x	
Inception-v3 (Szegedy et al., 2016)	78.8%	94.4%	24M	3.0x	5.7B	8.1x	
Xception (Chollet, 2017)	79.0%	94.5%	23M	3.0x	8.4B	12x	
EfficientNet-B2	79.8 %	94.9%	9.2M	1x	1.0B	1x	
Inception-v4 (Szegedy et al., 2017)	80.0%	95.0%	48M	5.2x	13B	13x	
Inception-resnet-v2 (Szegedy et al., 2017)	80.1%	95.1%	56M	6.1x	13B	13x	
EfficientNet-B3	81.1%	95.5%	12M	1x	1.8B	1x	
ResNeXt-101 (Xie et al., 2017)	80.9%	95.6%	84M	7.0x	32B	18x	
PolyNet (Zhang et al., 2017)	81.3%	95.8%	92M	7.7x	35B	19x	
EfficientNet-B4	82.6%	96.3%	19M	1x	4.2B	1x	
SENet (Hu et al., 2018)	82.7%	96.2%	146M	7.7x	42B	10x	
NASNet-A (Zoph et al., 2018)	82.7%	96.2%	89M	4.7x	24B	5.7x	
AmoebaNet-A (Real et al., 2019)	82.8%	96.1%	87M	4.6x	23B	5.5x	
PNASNet (Liu et al., 2018)	82.9%	96.2%	86M	4.5x	23B	6.0x	
EfficientNet-B5	83.3%	96.7%	30M	1x	9.9B	1x	
AmoebaNet-C (Cubuk et al., 2019)	83.5%	96.5%	155M	5.2x	41B	4.1x	
EfficientNet-B6	84.0%	96.9%	43M	1x	19B	1x	
EfficientNet-B7	84.4%	97.1%	66M	1x	37B	1x	
GPipe (Huang et al., 2018)	84.3%	97.0%	557M	8.4x	-	-	

We omit ensemble and multi-crop models (Hu et al., 2018), or models pretrained on 3.5B Instagram images (Mahajan et al., 2018).

Fixing Resolution Discrepancy

• Re-scaling

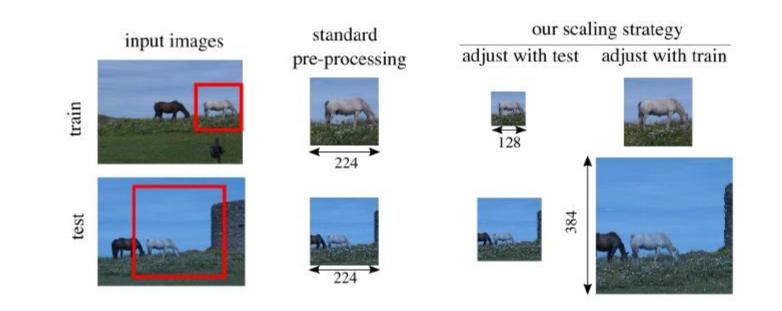


Table 2: State of the art on ImageNet with ResNet-50 architectures and with all types of architecture (Single Crop evaluation)

<u> </u>				••	\ U I	
Models	Extra Training Data	Train	Test	# Parameters	Top-1 (%)	Top-5 (%)
ResNet-50 Pytorch	_	224	224	25.6M	76.1	92.9
ResNet-50 mix up [44]	_	224	224	25.6M	77.7	94.4
ResNet-50 CutMix [43]	-	224	224	25.6M	78.4	94.1
ResNet-50-D [15]	-	224	224	25.6M	79.3	94.6
MultiGrain R50-AA-500 [5]	-	224	500	25.6M	79.4	94.8
ResNet-50 Billion-scale [42]	\checkmark	224	224	25.6M	81.2	96.0
Our ResNet-50	_	224	384	25.6M	79.1	94.6
Our ResNet-50 CutMix	_	224	320	25.6M	79.8	94.9
Our ResNet-50 Billion-scale@160	\checkmark	160	224	25.6M	81.9	96.1
Our ResNet-50 Billion-scale@224	\checkmark	224	320	25.6M	82.5	96.6
PNASNet-5 (N = 4, F = 216) [24]	_	331	331	86.1M	82.9	96.2
MultiGrain PNASNet @ 500px [5]		331	500	86.1M	83.6	96.7
AmoebaNet-B (6,512) [17]	_	480	480	577M	84.3	97.0
EfficientNet-B7 [37]	-	600	600	66M	84.4	97.1
Our PNASNet-5	-	331	480	86.1M	83.7	96.8
ResNeXt-101 32x8d [25]	\checkmark	224	224	88M	82.2	96.4
ResNeXt-101 32x16d [25]	\checkmark	224	224	193M	84.2	97.2
ResNeXt-101 32x32d [25]	\checkmark	224	224	466M	85.1	97.5
ResNeXt-101 32x48d [25]	\checkmark	224	224	829M	85.4	97.6
Our ResNeXt-101 32x48d	✓	224	320	829M	86.4	98.0

Conclusion

- Go Deeper
- Go Wider
- Rethink the problem!

Thank

you

