

Dynamic Neural Networks

Data Mining Lab, Big Data Research Center, UESTC Email: weihan@std.uestc.edu.cn

Background & Overview

Dynamic Architecture & Parameter

■ Inference & Training Tricks

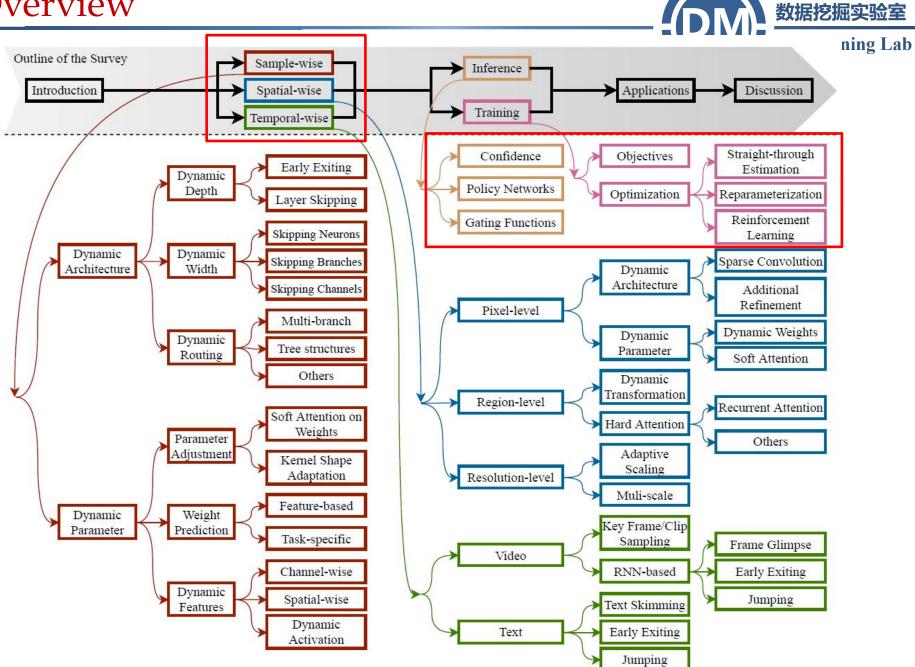
■ Application & Discussion

Background & Overview

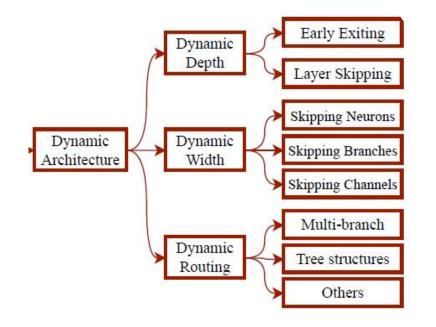
• Why dynamic?

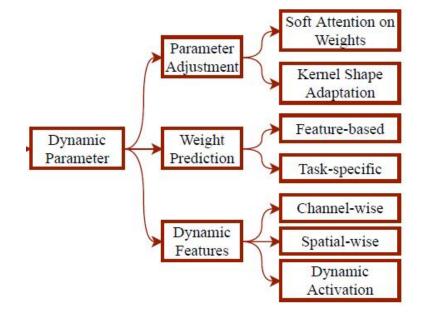
- <u>Accuracy</u>: extra information
- Efficiency: partial activation
- **Representation power**: *model capacity*
- Adaptiveness: hardware platforms & environments
- **Compatibility**: advanced techniques in deep learning
- **Generality**: *a wide range of applications*
- **Interpretability**: process information in a dynamic way

Overview



Overview

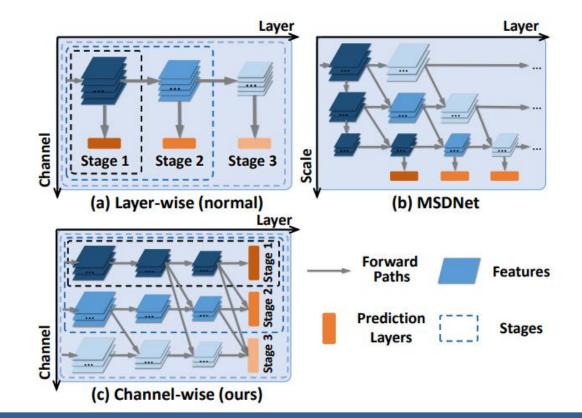




Dynamic Architecture & Parameter

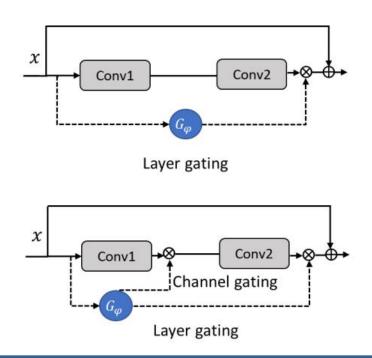
Dynamic Width – Convolutional Channel

- Multi-stage architecture
- Gating functions
- Dynamic Routing

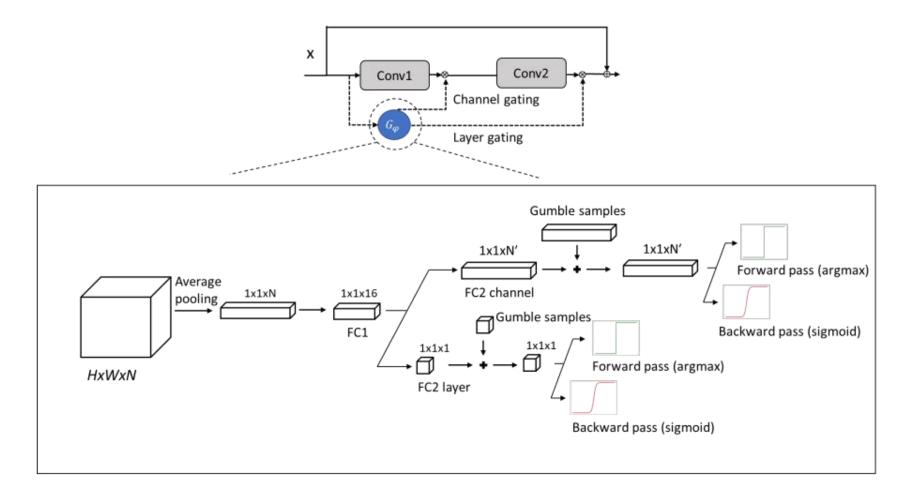


Dynamic Width – Convolutional Channel

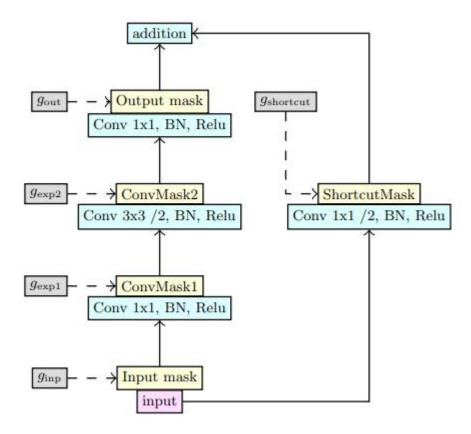
- Multi-stage architecture
- Gating functions
- Dynamic Routing



■ Gating Function – Different Settings

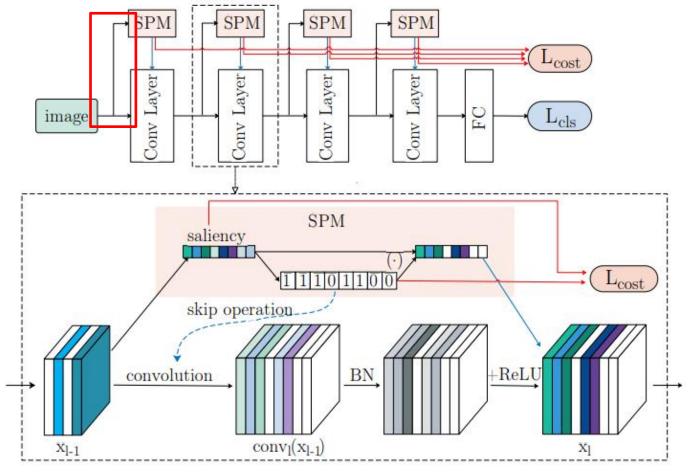


Gating Function – Different Settings



Channel selection using Gumbel Softmax

Gating Function – Different Settings



Self-adaptive Network Pruning

Gating Function – Different Settings

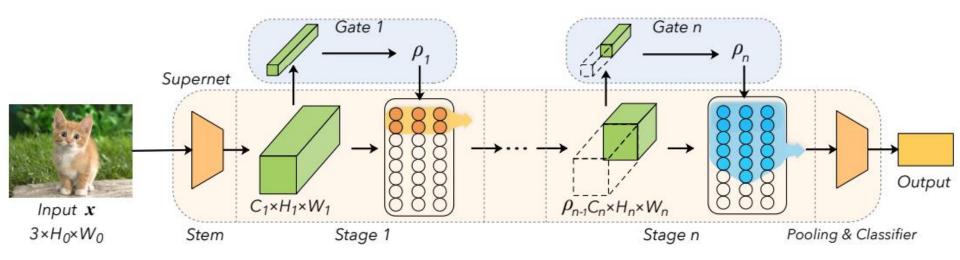
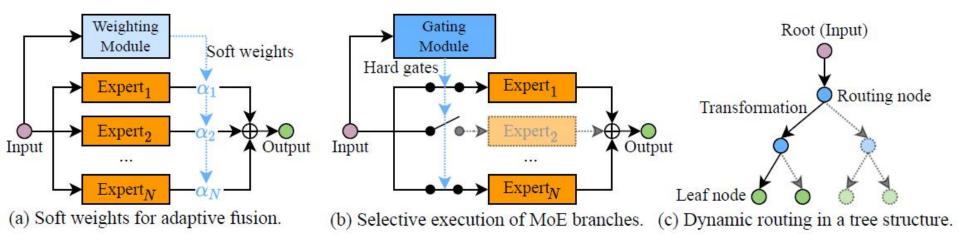


Table 1. Latency comparison of ResNet-50 with 25% channels (on GeForce RTX 2080 Ti). Both *masking* and *indexing* lead to inefficient computation waste, while *slicing* achieves comparable acceleration with *ideal* (the individual ResNet-50 $0.25 \times$).

method	full	masking	indexing	slicing (ours)	ideal
latency	12.2 ms	12.4ms	16.6 ms	7.9 ms	7.2 ms

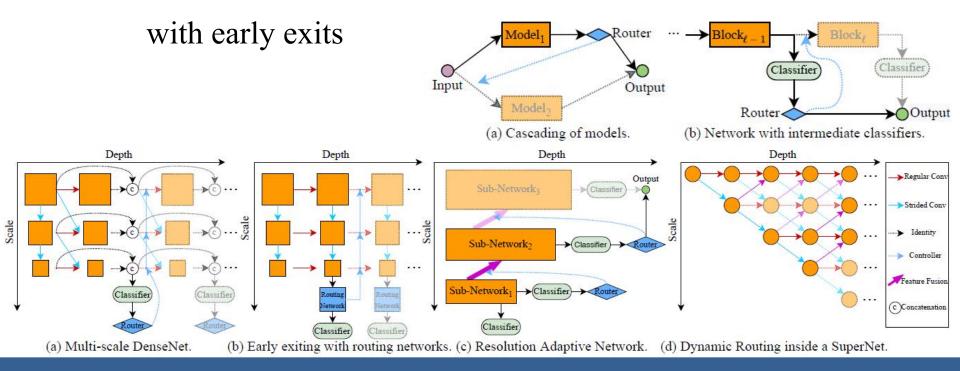
Dynamic Width – Dynamic Routing

- Soft decision tree
- Neural trees & tree-structured
- Controller node / network



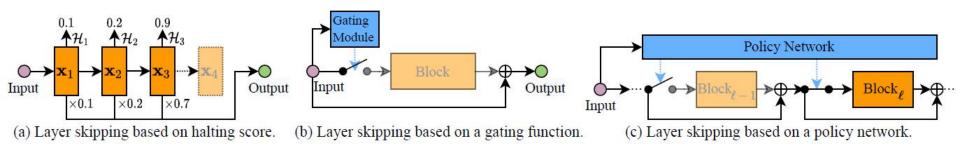
■ Dynamic Depth – Early exiting

- Cascading of DNNs
- Intermediate classifiers
- Multi-scale architecture



Dynamic Depth – Layer skipping

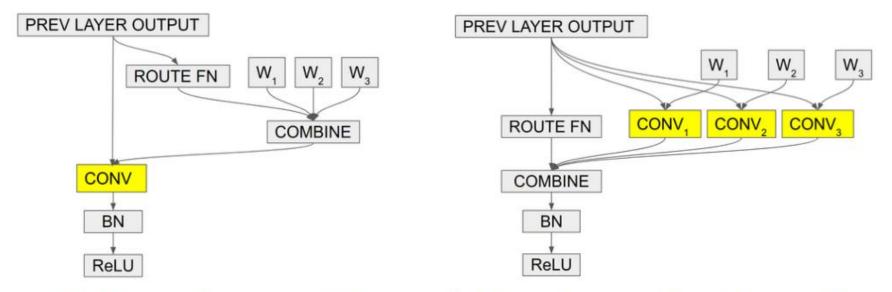
- Halting Score
- Gating Function
- Policy Network



Parameter Adjustment

- Attention on weight
- Kernel shape adaptation

$$\mathbf{y} = \mathbf{x} \star \tilde{\mathbf{W}} = \mathbf{x} \star (\sum_{n=1}^{N} \alpha_n \mathbf{W}_n)$$

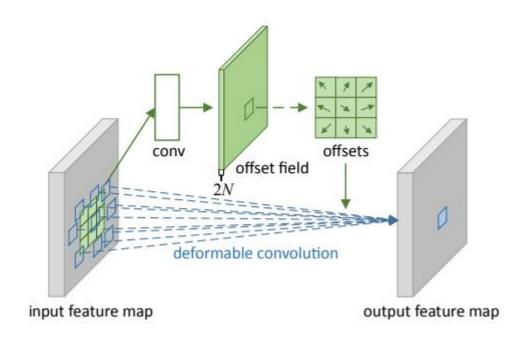


(a) CondConv: $(\alpha_1 W_1 + \ldots + \alpha_n W_n) * x$

(b) Mixture of Experts: $\alpha_1(W_1 * x) + \ldots + \alpha_n(W_n * x)$

Parameter Adjustment

- Attention on weight
- Kernel shape adaptation



数据挖掘实验室

Data Mining Lab

Parameter Adjustment

- Attention on weight
- Kernel shape adaptation

Waight	Model	# Params	FLOPs '	Top-1 err.	
Weight	ShuffleNetV2 [22] $(0.5\times)$	1.4M	41M	39.7	
	+ SE [11]	1.4M	41 M	37.5	
• Gen	+ SK [16]	1.5M	42M	37.5	
	+ CondConv [38] $(2\times)$	1.5M	41M	37.3	
• Task	+ WeightNet $(1 \times)$	1.5M	41M	36.7	
	+ CondConv $[38]$ (4×)	1.8M	41M	35.9	
	+ WeightNet $(2\times)$	1.8M	41M	35.5	
	ShuffleNetV2 [22] $(1.5\times)$	3.5M	299M	27.4	
	+ SE [11]	3.9M	299M	26.4	
	+ SK [16]	3.9M	306M	26.1	
·	+ CondConv [38] $(2\times)$	5.2M	303M	26.3	
	+ WeightNet $(1 \times)$	3.9M	301M	25.6	
	+ CondConv [38] $(4\times)$	8.7M	306M	26.1	
	+ WeightNet $(2\times)$	5.9M	303M	25.2	Grouped FC
	ShuffleNetV2 [22] $(2.0\times)$	5.5M	557M	25.5	
	+ WeightNet $(2\times)$	10.1M	565M	23.7	FCs
57	ResNet50 [7]	25.5M	3.86G	24.0	Weight network
	+ SE [11]	$26.7 \mathrm{M}$	3.86G	22.8	(b)
	+ CondConv $[38]$ (2×)	72.4M	3.90G	23.4	
	+ WeightNet $(1 \times)$	31.1M	3.89G	22.5	

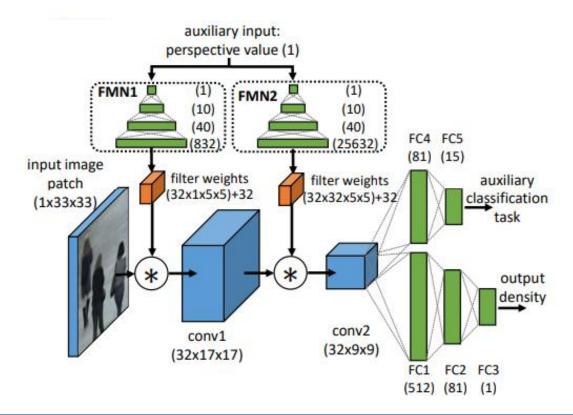
数据挖掘实验室

Data Mining Lab

LESS IS MORE

Weight Prediction

- General architectures
- Task-specific information



数据挖掘实验室 Data Mining Lab

			Type	K	relation to DY-ReLU
Dyn	ReLU [27,17]	4	static	2	special case $a_c^1(x) = 1, \ b_c^1(x) = 0$ $a_c^2(x) = 0, \ b_c^2(x) = 0$
•	LeakyReLU [25]	1	static	2	special case $a_c^1(x) = 1, \ b_c^1(x) = 0$ $a_c^2(x) = \alpha, \ b_c^2(x) = 0$
•	PReLU [10]		static	2	special case $a_{c}^{1}(x) = 1, \ b_{c}^{1}(x) = 0$ $a_{c}^{2}(x) = a_{c}, \ b_{c}^{2}(x) = 0$
	SE [14]		dynamic		special case $a_c^1(x) = a_c(x), \ b_c^1(x) = 0$ $0 \le a_c(x) \le 1$
	Maxout [7]		static	1,2,3,	DY-ReLU is a dynamic and efficient Maxout.
9	DY-ReLU	$x \rightarrow \theta$ $a_c^1(x) \leftarrow a_c^2(x) \leftarrow b$	dynamic	1,2,3,	identical

Dynamic Features

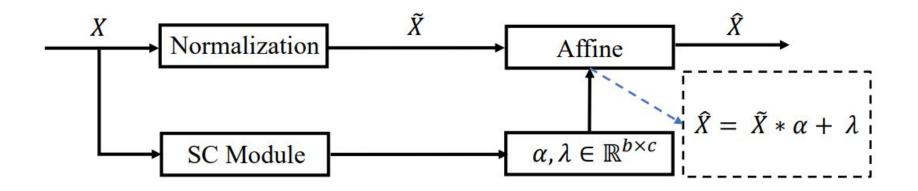
- Channel-wise attention
- Spatial-wise attention

• Dynamic activation functions

		MobileNetV2 $\times 0.35$			MobileNetV2 $\times 1.0$		
Activation	K	#Param	MAdds	Top-1	#Param	MAdds	Top-1
ReLU	2	1.7M	59.2M	60.3	3.5M	300.0M	72.0
RReLU [40]	2	1.7M	59.2M	$60.0_{(-0.3)}$	3.5M	300.0M	$72.5_{(+0.5)}$
LeakyReLU [25]	2	1.7M	59.2M	$60.9_{(+0.6)}$			$72.7_{(+0.7)}$
PReLU [10]	2			$63.1_{(+2.8)}$			$73.3_{(+1.3)}$
SE[14]+ReLU	2	2.1M	62.0M	$62.8_{(+2.5)}$			$74.2_{(+2.2)}$
Maxout [7]	2	2.1M	106.6M	$64.9_{(+4.6)}$			$75.1_{(+3.1)}$
Maxout [7]	3			$65.4_{(+5.1)}$	7.8M	860.2M	$75.8_{(+3.8)}$
DY-ReLU-B	2			$66.4_{(+6.1)}$	7.5M	315.5M	$76.2_{(+4.2)}$
DY-ReLU-B	3			66.6 _(+6.3)	9.2M	322.8M	$76.2_{(+4.2)}$

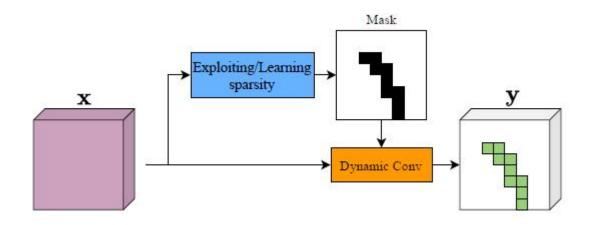
Dynamic Features

- Channel-wise attention
- Spatial-wise attention
- Dynamic activation functions



Pixel-level Dynamic Networks

- Dynamic sparse convolution
- Dynamic reception fields



Region-level Dynamic Networks

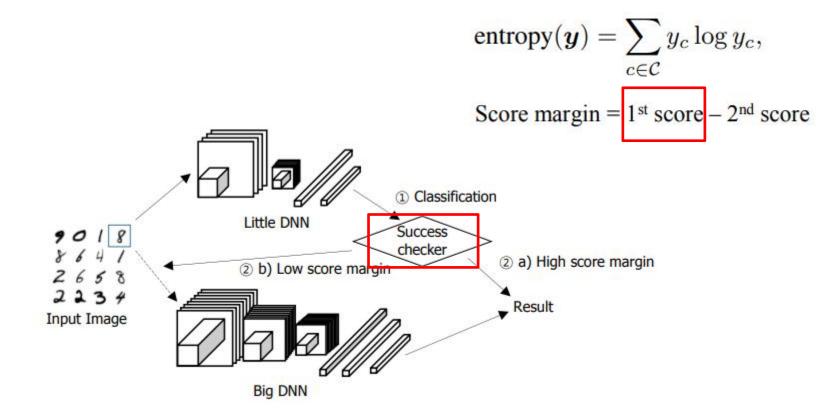
- Dynamic transformations
- Hard attention on selected patches

- Resolution-level Dynamic Networks
 - Adaptive scaling ratios
 - Dynamic resolution in multi-scale architectures

Temporal-wise Dynamic Networks

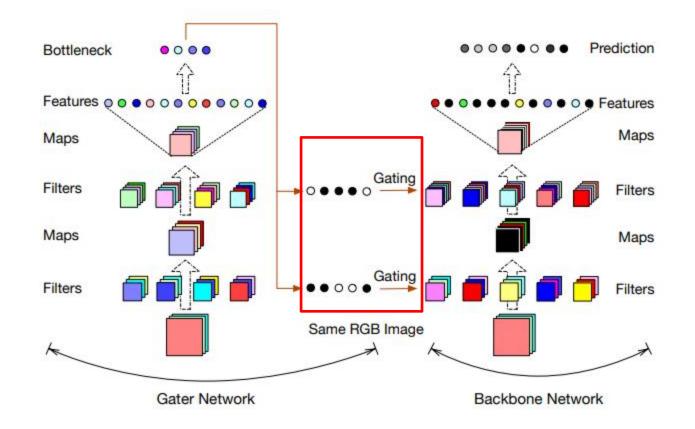
Inference & Training Tricks

Confidence-based Criteria



Inference

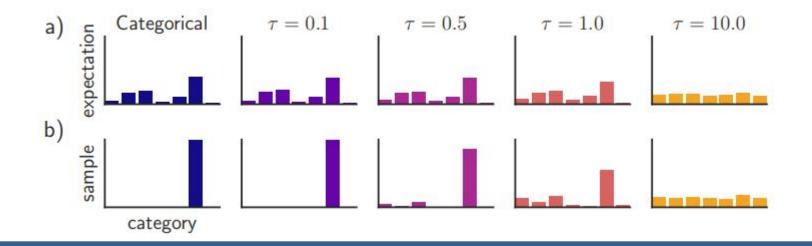
Policy Networks



■ Gating Functions – Gumbel Softmax

$$z = \mathrm{one_hot}(rgmax_i[g_i + \mathrm{log}\pi_i])$$

$$y_i = rac{\exp(\log(\pi_i) + g_i)/ au)}{\sum\limits_{j=1}^k \exp(\log(\pi_j) + g_j)/ au)} \hspace{1.5cm} ext{for}\hspace{1.5cm}i=1,\ldots,k$$



■ Gating Functions – Sigmoid

$$f(b_i, \beta_1, \beta_2) = \text{Sigmoid} \circ \text{Log}(b_i) = \frac{1}{1 + (\frac{b_i}{\beta_1})^{-\beta_2}}$$

 $\mathbf{a}_{l}^{t} = \sigma\left(s\mathbf{e}_{l}^{t}\right)$

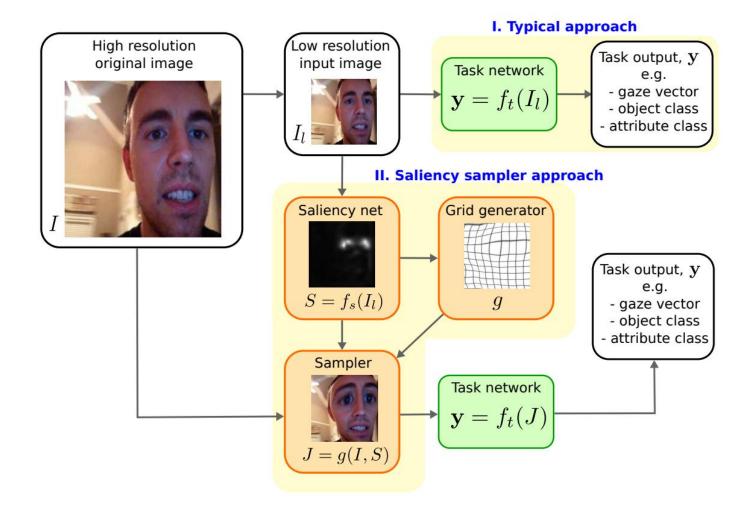
■ Gating Functions – Hash

$$s_1 = \max(0, \min(1, a \cdot \sigma(s^l(x^{l-1}) + \xi) - b))$$

- Training multi-exit networks
- Gradient estimation
- Reparameterization
- Reinforcement learning
- Encouraging sparsity
- Clustering hypothesis

Application & Discussion

■ Fine-grained classification



Method

LATEM ALE [1] DeViSE SJE [2] ESZSL SYNC Relation DEM [5 f-CLSW SE[†] [41 SP-AEP TAFE-N

■ Few-shot learning

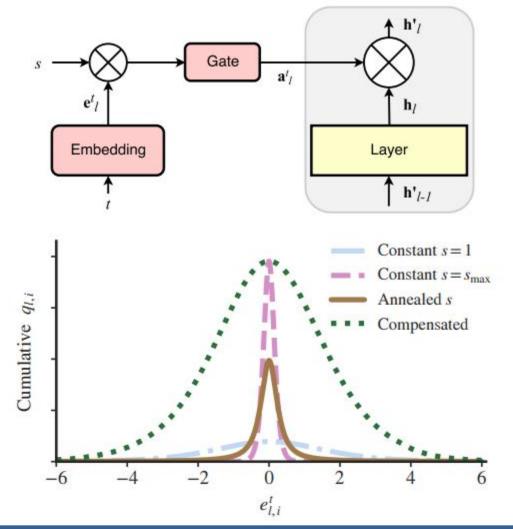
Table 6: Few-shot ImageNet Classification on ImageNet. Our model is competitive compared to the state-of-the-art meta learning model without hallucinator.

Method	Novel '	Top-5 Acc	All Top-5 Acc	
	n=1	n=2	n=1	n=2
LogReg [17]	38.4	51.1	40.8	49.9
PN [38]	39.3	54.4	49.5	61.0
MN [42]	43.6	54.0	54.4	61.0
TAFE-Net	43.0	53.9	55.7	61.9
LogReg w/ Analogies [17]	40.7	50.8	52.2	59.4
PN w/G [45]	45.0	55.9	56.9	63.2

aPY	
S	H
73.0	0.2
73.7	8.7
76.9	9.2
55.7	6.9
70.1	4.6
66.3	13.3
-	-
75.1	19.4
-	-
-	
63.4	22.6
75.4	36.8
	-

Application

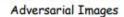
Continual learning



Adversarial attack

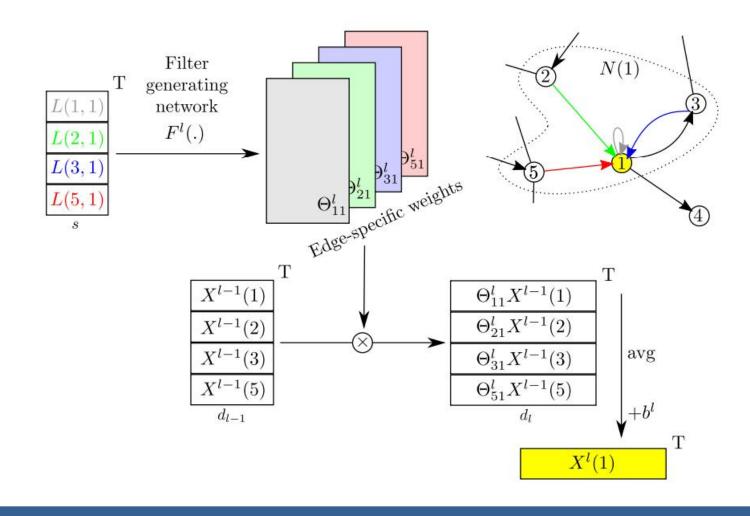
Clean Images		Brar	nch i	Branch K		
ADV. TRAINING	NO ATTACK	PGD-20	PGD-20 (Avg.)	PGD-20 (MAX.)	DEEPSLOTH	
UNDEFENDED	0.77/89%	0.79/29%	0.85 / 10%	0.81/27%	0.01/13%	
PGD-10	0.61/72%	0 55 / 38%	0 64 / 23%	0 58 / 29%	0.33/70%	

	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
OURS OURS + PGD-10	0.74 / 72%	0.71/38%	0.82 / 14% 0.63 / 23%	0.77 / 21% 0.58 / 28%	0.44 / 67% 0.33 / 70%
PGD-10 (MAX.)	0.57/72%	0.51/37%	0.54/30%	0.52/34%	0.32 / 70%
PGD-10 (Avg.)	0.53/72%	0.47/36%	0.47/35%	0.47/35%	0.32/70%
PGD-10	0.61/72%	0.55/38%	0.64/23%	0.58/29%	0.33 / 70%
UNDEFENDED	0.77/89%	0.79/29%	0.85 / 10%	0.81/27%	0.01/13%

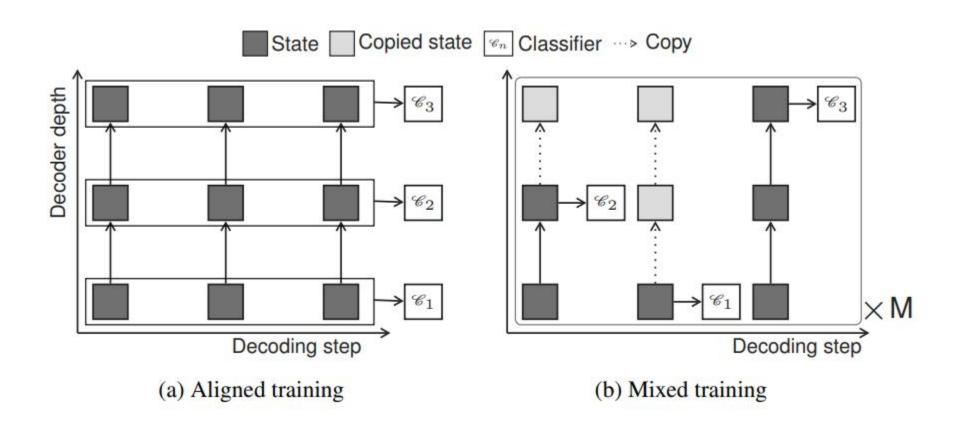


Application

Graph learning



Time serial model



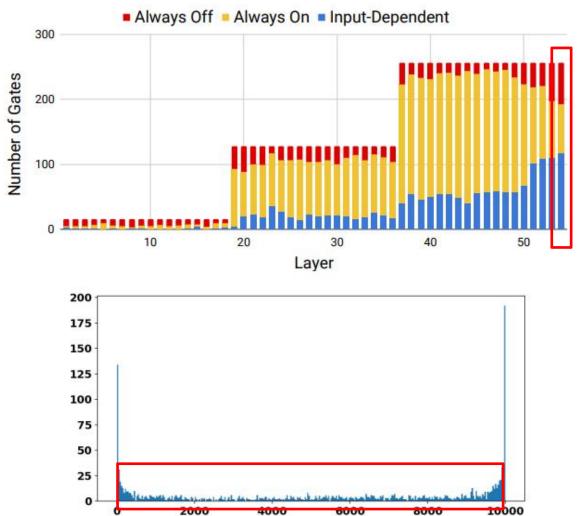
■ Scalability

Privacy & Security

■ Interpretability

■ Effectiveness?

Activation



Thank

you

