

An Efficient Network Architecture: Before and After Training

Wei Han

Outline

■ After Training

- Magnitude based
- Activation based
- Reconstruction based
- Influence based

■ Before Training

- ResNeXt
- SENet
- MobileNet
- ShuffleNet

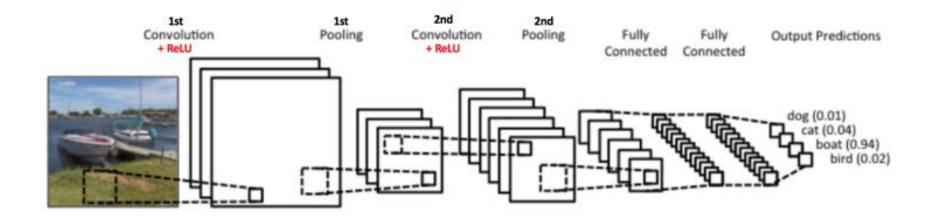
Motivation

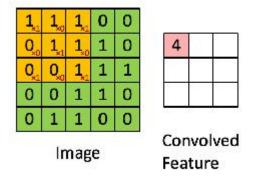
- Towards practical deployment
 - Huge & Slow

- Towards interpretability
 - Reduce complexity

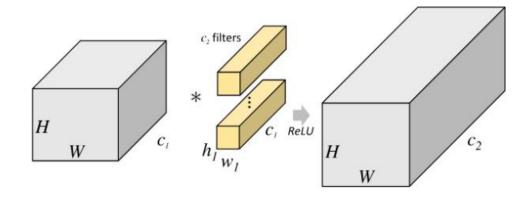
- Towards performance
 - Improve information flow

■ Neural Network Model





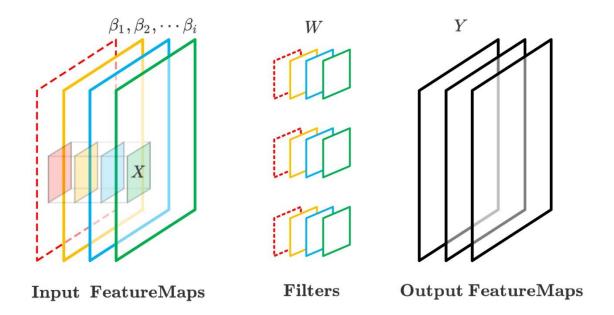
Neural Network Model



- Params: $(h_l \times w_l \times C_1) \times C_2$
- Flops: $(h_l \times w_l \times C_1 \times C_2) \times (H_{out} \times W_{out})$
- A fully connection between C_1 and C_2

■ Pruning

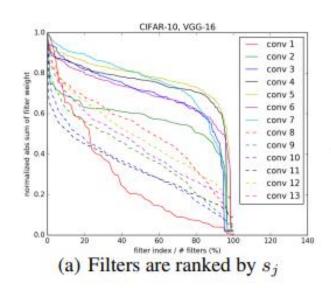
- Build a efficient (effective) network
- By exploiting the weight importance
- Re-training

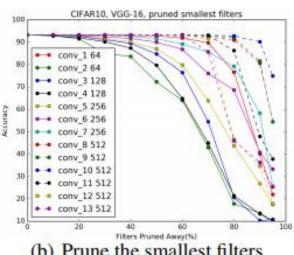


■ Magnitude based

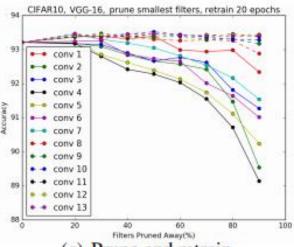
Small norm less important

Pruning filters for efficient convnets. ICLR, 2017.







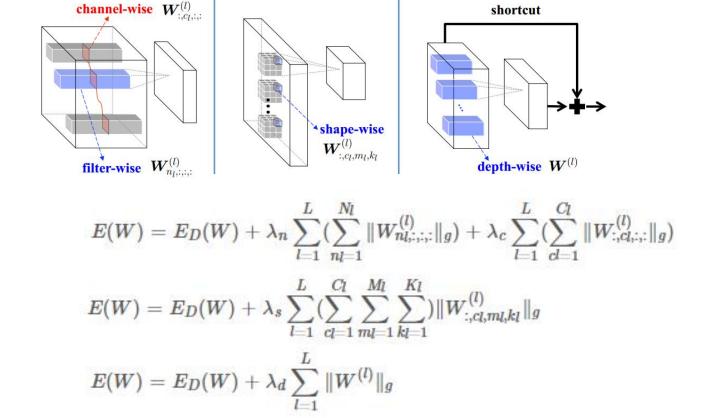


(c) Prune and retrain

- Sparsity
 - Group Lasso

$$R_g(w) = \sum_{g=1}^G \|w^{(g)}\|_g$$

Learning structured sparsity in deep neural networks. NIPS, 2016.

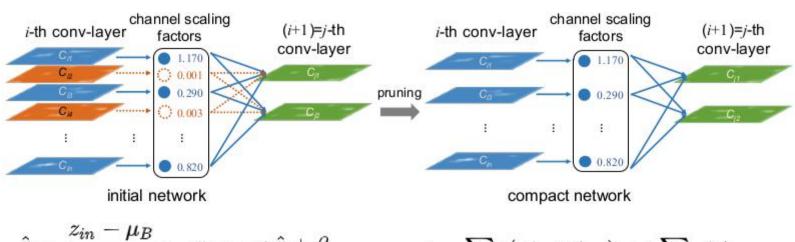


- Sparsity
 - L0 regularization

Training skinny deep neural networks with iterative hard thresholding methods. *arXiv*, 2016.

BN (channel-wise scaling factor)

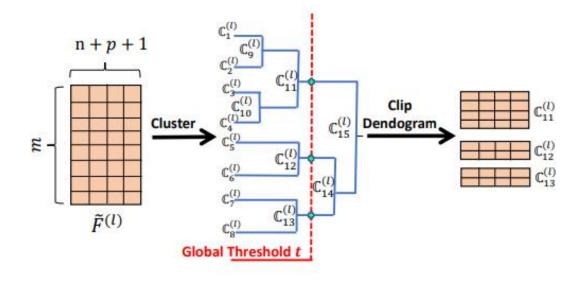
Learning efficient convolutional networks through network slimming. *ICCV*, 2017.



$$\hat{z} = rac{z_{in} - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}; \quad z_{out} = \gamma \hat{z} + eta \qquad \qquad L = \sum_{(x,y)} lig(f(x,W),yig) + \lambda \sum_{\gamma \in \Gamma} g(\gamma)$$

- Magnitude based
 - Cluster (incoming and outgoing weights)

SCSP: Spectral Clustering Filter Pruning with Soft Self-adaption Manners. *arxiv*, 2018.



■ Activation based

• Zero count

Network Trimming: A Data-Driven Neuron Pruning Approach towards Efficient Deep Architectures. *arXiv*, 2016.

$$APoZ_{c}^{(i)} = APoZ(O_{c}^{(i)}) = \frac{\sum_{k}^{N} \sum_{j}^{M} f(O_{c,j}^{(i)}(k) = 0)}{N \times M}$$

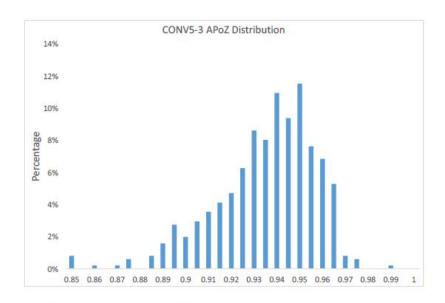


Figure 1: CONV5-3 APoZ Distribution

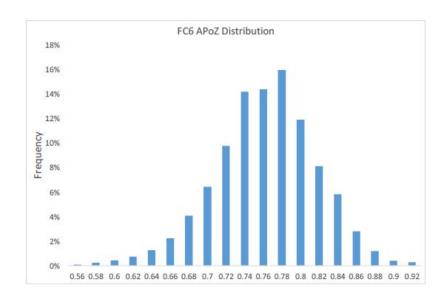


Figure 2: FC6 APoZ Distribution

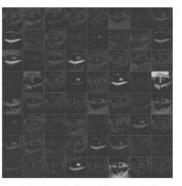
https://blog.csdn.net/hsqvc

■ Activation based

Cluster (similarity upon feature maps)

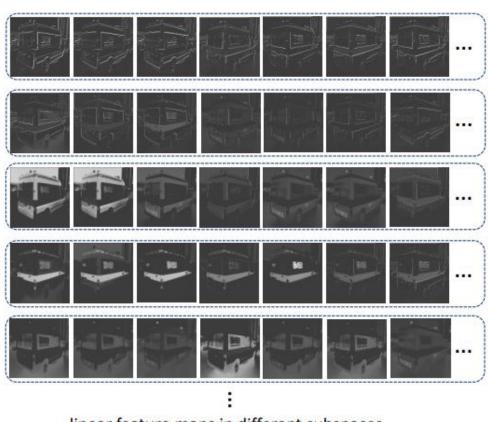
Exploring Linear Relationship in Feature Map Subspace for ConvNets Compression. *arxiv*, 2018.

(a) bus



conv1_1(original)

conv1_1(clustered)



linear feature maps in different subspaces

- Activation based
 - Entropy based

An Entropy-based Pruning Method for CNN Compression. arXiv, 2017.

$$H_j = -\sum_{i=1}^m p_i \log p_i.$$

Reconstruction based

• Greedy Algorithm

ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression. *ICCV*, 2017.

$$\underset{S}{\operatorname{arg\,min}} \sum_{i=1}^{m} \left(\hat{y}_i - \sum_{j \in S} \hat{\mathbf{x}}_{i,j} \right)^2$$
s.t. $|S| = C \times r, \quad S \subset \{1, 2, \dots, C\}.$

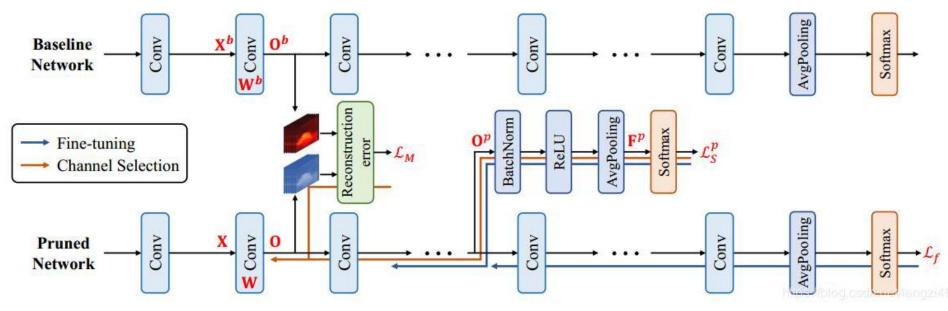
LASSO regression

Channel pruning for accelerating very deep neural networks. ICCV, 2017.

$$\underset{\boldsymbol{\beta}, \mathbf{W}}{\operatorname{arg\,min}} \frac{1}{2N} \left\| \mathbf{Y} - \sum_{i=1}^{c} \beta_{i} \mathbf{X}_{i} \mathbf{W}_{i}^{\top} \right\|_{F}^{2} + \lambda \left\| \boldsymbol{\beta} \right\|_{1}$$
 subject to $\left\| \boldsymbol{\beta} \right\|_{0} \leq c', \forall i \left\| \mathbf{W}_{i} \right\|_{F} = 1$

■ Reconstruction based

Discrimination-aware Channel Pruning for Deep Neural Networks. *NIPS*. 2018.



$$\mathbf{F}^p(\mathbf{W}) = \text{AvgPooling}(\text{ReLU}(\text{BN}(\mathbf{O}^p))),$$

$$\mathcal{L}_{S}^{p}(\mathbf{W}) = -\frac{1}{N} \left[\sum_{i=1}^{N} \sum_{t=1}^{m} I\{y^{(i)} = t\} \log \frac{e^{\theta_{t}^{\top} \mathbf{F}^{(p,i)}}}{\sum_{k=1}^{m} e^{\theta_{k}^{\top} \mathbf{F}^{(p,i)}}} \right],$$

■ Influence based

Taylor expansion

Pruning Convolutional Neural Networks for Resource Efficient Transfer Learning. *ICLR*, 2016.

$$egin{aligned} & \min_{W'} |C(D|W') - C(D|W)| \ \ s.t. \ \ ||W'||_0 \leq B \ & |\Delta C(h_i)| = |C(D,h_i=0) - C(D,h_i)| \ & C(D,h_i=0) = C(D,h_i) - rac{\partial C}{\partial h_i} h_i + R_1(h_i=0) \ & |\Delta C(h_i)| = |C(D,h_i=0) - C(D,h_i)| = |rac{\partial C}{\partial h_i} h_i| \ & \Theta_{TE}(z_l^{(k)}) = |rac{1}{M} \sum_m rac{\partial C}{\partial z_{l,m}^{(k)}} z_{l,m}^{(k)}| \end{aligned}$$

Influence based

Taylor expansion

Collaborative Channel Pruning for Deep Networks. ICML, 2019.

$$\mathcal{L}(\boldsymbol{\beta}, \mathbf{W}) \approx \mathcal{L}(\mathbf{W}) + \mathbf{g}^T \mathbf{v} + \frac{1}{2} \mathbf{v}^T \mathbf{H} \mathbf{v}$$

$$\mathbf{v} = \text{vec}(\boldsymbol{\beta} \odot \mathbf{W} - \mathbf{W}) \quad \mathbf{g} = \nabla \mathcal{L}(\mathbf{w}), \ \mathbf{H} = \nabla^2 \mathcal{L}(\mathbf{w})$$

$$\mathcal{L}(\boldsymbol{\beta}, \mathbf{\bar{W}}) \approx \mathcal{L}(\mathbf{\bar{W}}) + \sum_{i=1}^{c_o} (\beta_i - 1) \, \mathbf{\bar{g}}_i^T \mathbf{\bar{w}}_i$$

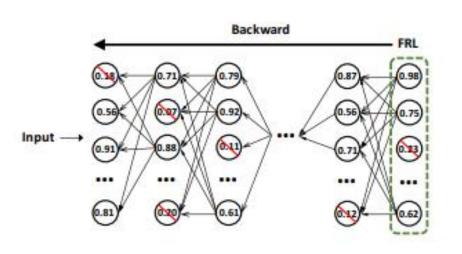
$$+ \frac{1}{2} \sum_{i,j=1}^{c_o} (\beta_i - 1) \, (\beta_j - 1) \, \mathbf{\bar{w}}_i^T \mathbf{\bar{H}}_{ij} \mathbf{\bar{w}}_j$$

$$\begin{aligned} u_i &= \bar{\mathbf{g}}_i^T \bar{\mathbf{w}}_i &, \ \forall i \\ s_{ij} &= \frac{1}{2} \bar{\mathbf{w}}_i^T \bar{\mathbf{H}}_{ij} \bar{\mathbf{w}}_j, \ \forall i, j \end{aligned} \qquad \begin{aligned} &\min \ \sum_{i=1}^{c_o} u_i \left(\beta_i - 1\right) + \sum_{i,j=1}^{c_o} \underline{s_{ij}} \left(\beta_i - 1\right) \left(\beta_j - 1\right) \\ s.t. \ \|\boldsymbol{\beta}\|_0 &= p, \ \beta_i \in \left\{0, 1\right\}, \ \forall i \end{aligned}$$

Influence based

Score Propagation

NISP: Pruning Networks using Neuron Importance Score Propagation. *CVPR*, 2018.



$$f^{(l)}(\mathbf{x}) = \sigma^{(l)}(\mathbf{w}^{(l)}\mathbf{x} + \mathbf{b}^{(l)}), \quad G^{(i,j)} = f^{(j)} \circ G^{(i,j-1)}$$

$$\mathcal{F}(\mathbf{s}_{l}^{*}|\mathbf{x}, \mathbf{s}_{n}; F) = \langle \mathbf{s}_{n}, |F(\mathbf{x}) - F(\mathbf{s}_{l}^{*} \odot \mathbf{x})| \rangle,$$

Lipschitz Continuity:

$$|\sigma^{(k)}(\mathbf{x}) - \sigma^{(k)}(\mathbf{y})| \le C_{\sigma}^{(k)}|\mathbf{x} - \mathbf{y}|.$$

$$|f^{(k)}(\mathbf{x}) - f^{(k)}(\mathbf{y})| \le C_{\sigma}^{(k)} |\mathbf{w}^{(k)}| \cdot |\mathbf{x} - \mathbf{y}|,$$

$$|G^{(i,j)}(\mathbf{x}) - G^{(i,j)}(\mathbf{y})| \le C_{\sigma}^{(j)} |\mathbf{w}^{(j)}| |G^{(i,j-1)}(\mathbf{x}) - G^{(i,j-1)}(\mathbf{y})|$$

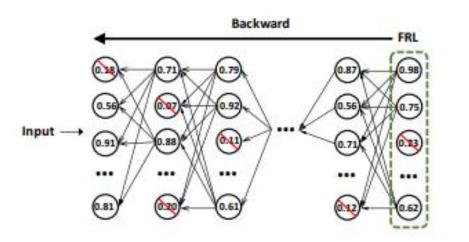
$$\mathbf{x} = \mathbf{x}_{l}^{(m)}, \mathbf{y} = \mathbf{s}_{l}^{*} \odot \mathbf{x}_{l}^{(m)}, i = l+1$$

$$|G^{(l+1,n)}(\mathbf{x}_l^{(m)}) - G^{(l+1,n)}(\mathbf{s}_l^* \odot \mathbf{x}_l^{(m)})| \leq C_{\Sigma}^{(l+1,n)} \mathbf{W}^{(l+1,n)} |\mathbf{x}_l^{(m)} - \mathbf{s}_l^* \odot \mathbf{x}_l^{(m)}|$$

■ Influence based

• Score Propagation

NISP: Pruning Networks using Neuron Importance Score Propagation. *CVPR*, 2018.



$$\sum_{m=1}^{M} \mathcal{F}(\mathbf{s}_{l}^{*}|\mathbf{x}_{l}^{(m)}, \mathbf{s}_{n}; F^{(l+1)}) \leq C \sum_{i} r_{l,i} (1 - s_{l,i}^{*})$$

$$C = C_{\Sigma}^{(l+1,n)} C_x \quad \mathbf{r}_l = \mathbf{W}^{(l+1,n)^{\mathsf{T}}} \mathbf{s}_n$$

$$\arg\min_{\mathbf{s}_l^*} \sum_i r_{l,i} (1 - s_{l,i}^*) \Leftrightarrow \arg\max_{\mathbf{s}_l^*} \sum_i s_{l,i}^* r_{l,i}$$

So:
$$\mathbf{s}_k = |\mathbf{w}^{(k+1)}|^{\mathsf{T}} |\mathbf{w}^{(k+2)}|^{\mathsf{T}} \cdots |\mathbf{w}^{(n)}|^{\mathsf{T}} \mathbf{s}_n$$
$$\mathbf{s}_k = |\mathbf{w}^{(k+1)}|^{\mathsf{T}} \mathbf{s}_{k+1}$$

Influence based

Weight probe

SNIP: Single-shot Network Pruning based on Connection Sensitivity. ICLR, 2018.

$$\min_{\mathbf{w}} L(\mathbf{w}; \mathcal{D}) = \min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \ell(\mathbf{w}; (\mathbf{x}_i, \mathbf{y}_i)),$$
s.t. $\mathbf{w} \in \mathbb{R}^m$, $\|\mathbf{w}\|_0 \le \kappa$.

$$\min_{\mathbf{c}, \mathbf{w}} L(\mathbf{c} \odot \mathbf{w}; \mathcal{D}) = \min_{\mathbf{c}, \mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \ell(\mathbf{c} \odot \mathbf{w}; (\mathbf{x}_i, \mathbf{y}_i)) ,$$
s.t. $\mathbf{w} \in \mathbb{R}^m ,$
 $\mathbf{c} \in \{0, 1\}^m , \quad \|\mathbf{c}\|_0 \le \kappa ,$

$$\Delta L_j(\mathbf{w}; \mathcal{D}) \approx g_j(\mathbf{w}; \mathcal{D}) = \left. \frac{\partial L(\mathbf{c} \odot \mathbf{w}; \mathcal{D})}{\partial c_j} \right|_{\mathbf{c} = \mathbf{1}} = \left. \lim_{\delta \to 0} \frac{L(\mathbf{c} \odot \mathbf{w}; \mathcal{D}) - L((\mathbf{c} - \delta \mathbf{e}_j) \odot \mathbf{w}; \mathcal{D})}{\delta} \right|_{\mathbf{c} = \mathbf{1}}$$

$$s_j = \frac{|g_j(\mathbf{w}; \mathcal{D})|}{\sum_{k=1}^m |g_k(\mathbf{w}; \mathcal{D})|}$$

■ Rethinking

Sparse Density (irregular pruning)

DARB: A Density-Aware Regular-Block Pruning for Deep Neural

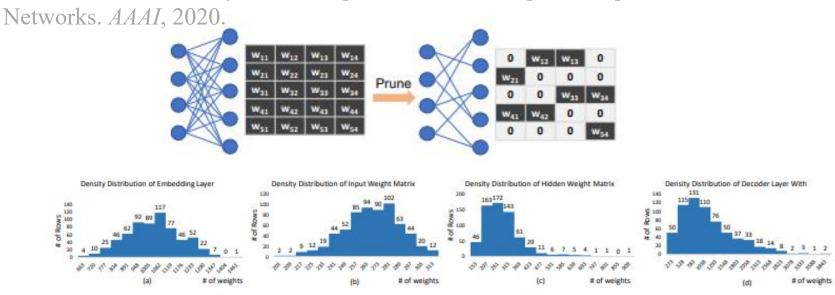
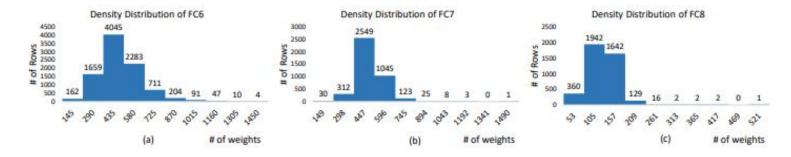


Figure 3: Row density distribution of the four weight components of a medium LSTM with 90% sparsity: (a) embedding layer, (b) input weight matrices, (c) hidden weight matrices, (d) decoder layer.



数据挖掘实验室 Data Mining Lab

■ Rethinking

Sparse Density (irregular pruning)

DARB: A Density-Aware Regular-Block Pruning for Deep Neural Networks. *AAAI*, 2020.

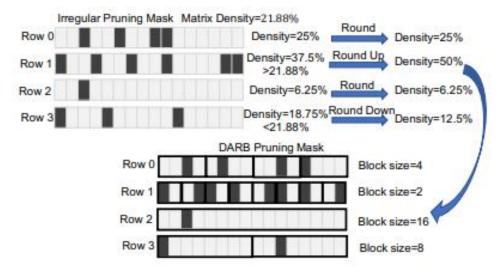
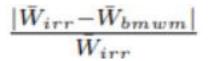


Table 2: The Comparison of Relative Difference of Retained Weights between BMWM and Block Pruning

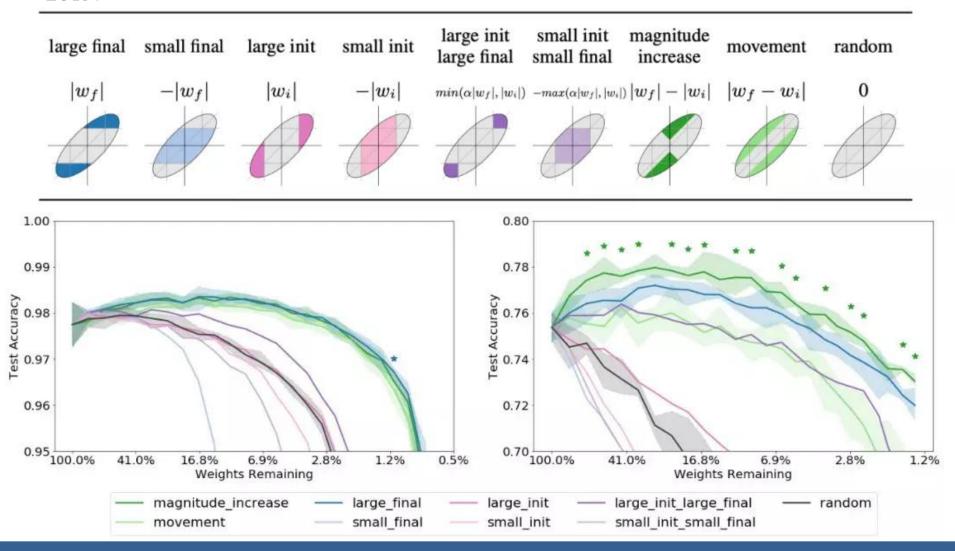
Layer	BMWM to Irregular Pruning	Block Pruning 4 × 4 to Irregular Pruning		
Embedding	8.8%	45.3%		
LSTM1	4.3%	31.1%		
LSTM2	4.3%	31.1%		
Decoder	8.9%	45.2%		



数据挖掘实验室 Data Mining Lab

Decode Lottery Ticket

Deconstructing Lottery Tickets: Zeros, Signs, and the Supermask. *NIPS*, 2019.



数据挖掘实验室 Data Mining Lab

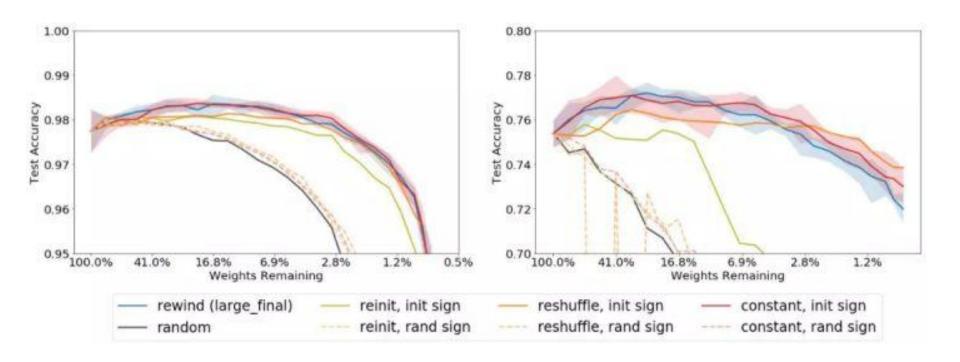
Decode Lottery Ticket

Deconstructing Lottery Tickets: Zeros, Signs, and the Supermask. *NIPS*, 2019.

· Reinit: 基于原始的初始化分布来初始化保留的权重

• Reshuffle: 基于保留权重的原始分布进行初始化

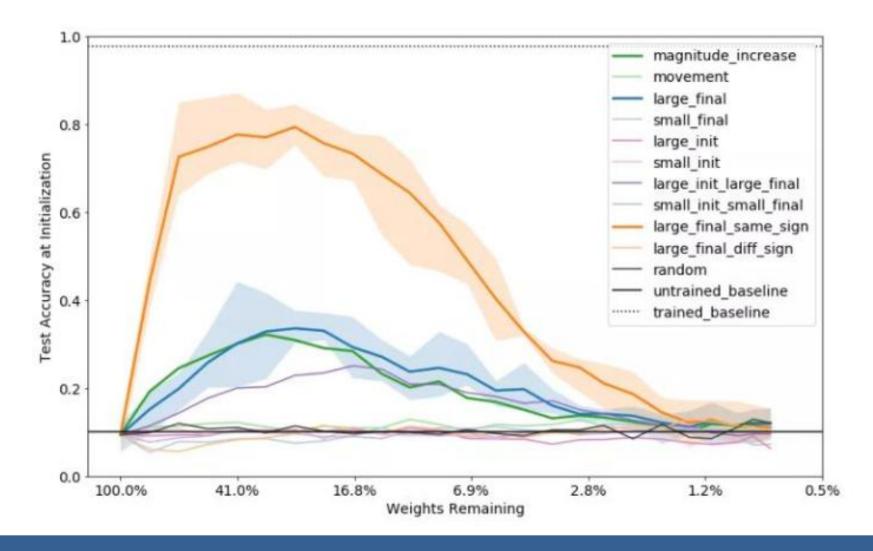
• Constant: 将保留的权重设为正或负的常数, 即每层原初始值的标准差



数据挖掘实验室 Data Mining Lab

Decode Lottery Ticket

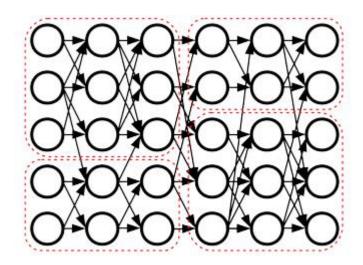
Deconstructing Lottery Tickets: Zeros, Signs, and the Supermask. *NIPS*, 2019.



数据挖掘实验室 **Data Mining Lab**

Modular

Pruned Neural Networks Are Surprisingly Modular. arxiv, 2020.



Algorithm 1 Normalized Spectral Clustering [34]

Input: Adjacency matrix A, number k of clusters

Compute the normalized Laplacian L_{norm}

Compute the first k eigenvectors $u_1, \ldots, u_k \in \mathbb{R}^N$ of L_{norm} Form the matrix $U \in \mathbb{R}^{k \times N}$ whose j^{th} row is u_j^{\top}

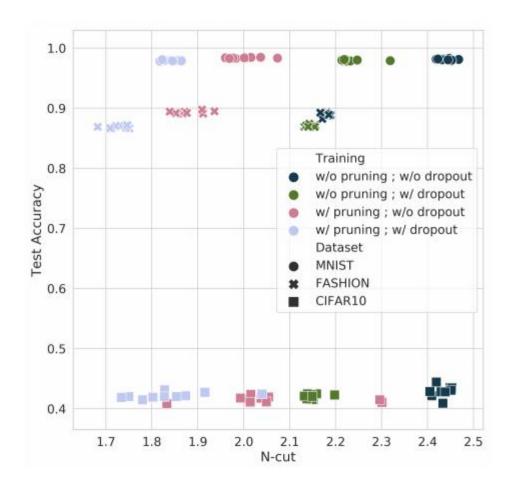
For $n \in \{1, ..., N\}$, let $y_n \in \mathbb{R}^k$ be the n^{th} column of U

Cluster the points $(y_n)_{n=1}^N$ with the k-means algorithm into clusters C_1, \ldots, C_k

Return: Clusters X_1, \ldots, X_k with $X_i = \{n \in \{1, \ldots, N\} \mid y_n \in C_i\}$

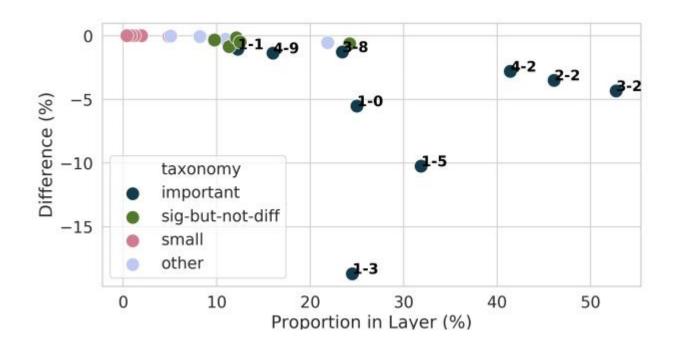
Modular

Pruned Neural Networks Are Surprisingly Modular. arxiv, 2020.



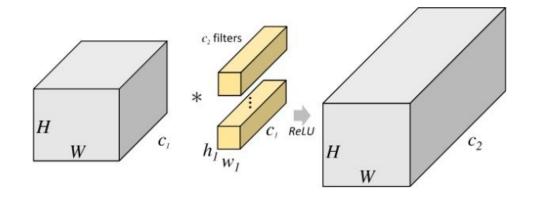
Modular

Pruned Neural Networks Are Surprisingly Modular. arxiv, 2020.



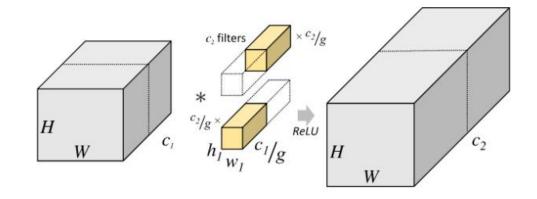
- Summary
 - Irregular pruning, powerful
 - Structural pruning, efficient
 - Sparsity in training
 - Sign is important for init
 - Cross-Layer Pruning

Preliminary



- Params: $(h_l \times w_l \times C_1) \times C_2$
- Flops: $(h_l \times w_l \times C_1 \times C_2) \times (H_{out} \times W_{out})$

■ Group Convolution

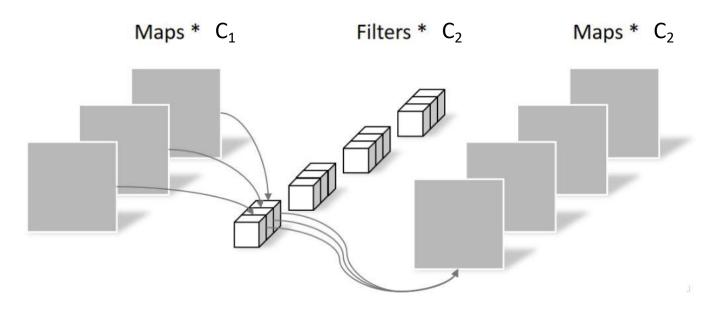


• Params:
$$g \times \left(h_l \times w_l \times \frac{C_1}{g}\right) \times \frac{C_2}{g} = h_l \times w_l \times C_1 \times C_2/g$$

• Flops: $h_l \times w_l \times C_1 \times C_2 \times H_{out} \times W_{out}/g$

Before Training

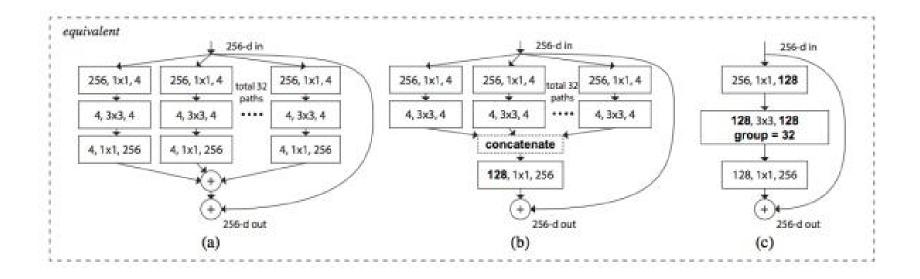
■ 1×1 Convolution



• Params: $C_1 \times C_2$

• Flops: $C_1 \times C_2 \times H_{out} \times W_{out}$

■ ResNeXt



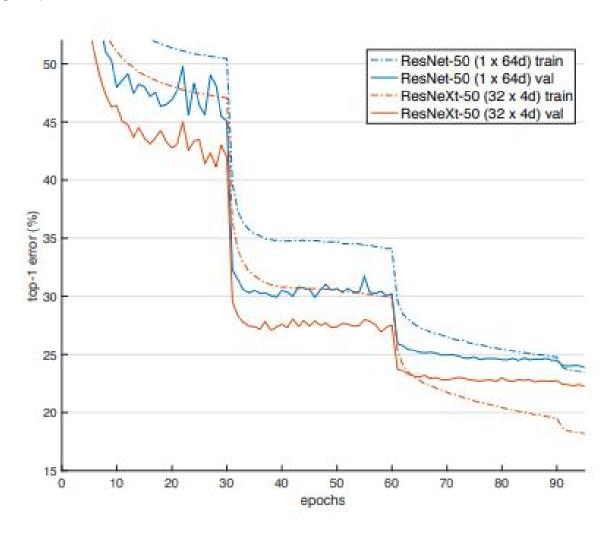
- Group Convolution $+ 1 \times 1$ Convolution
- Concise network structure design

Before Training

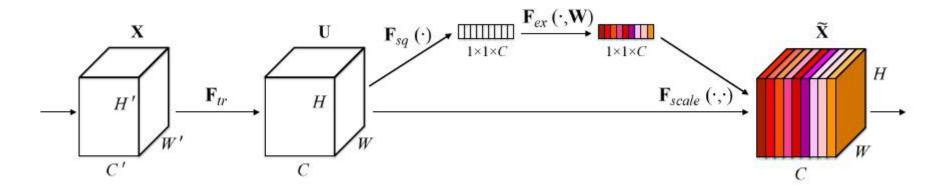
■ ResNeXt

stage	output	ResNet-50		ResNeXt-50 (32×4d)			
conv1	112×112	7×7, 64, stride 2		7×7, 64, stride 2			
		3×3 max pool, stride 2		3×3 max pool, stride 2			
conv2	56×56	1×1, 64 3×3, 64 1×1, 256	 ×3	1×1, 128 3×3, 128, C=32 1×1, 256	×3		
conv3	28×28	1×1, 128 3×3, 128 1×1, 512	×4	1×1, 256 3×3, 256, C=32 1×1, 512	×4		
conv4	14×14	1×1, 256 3×3, 256 1×1, 1024]×6	1×1,512 3×3,512, C=32 1×1,1024	×6		
conv5	7×7	1×1,512 3×3,512 1×1,2048]×3	1×1, 1024 3×3, 1024, C=32 1×1, 2048]×3		
	1×1	global average pool 1000-d fc, softmax		global average pool 1000-d fc, softmax			
# pa	arams.	25.5×10^6		25.0×10^6			
FI	OPs	4.1×10 ⁹		4.2×10 ⁹			

■ ResNeXt



Squeeze-and-Excitation Networks

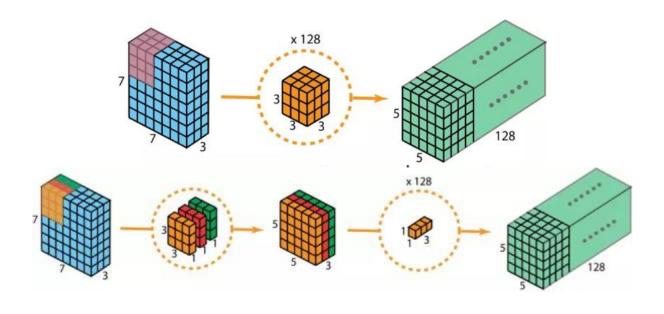


- Explicitly model the relationship between channels
- 2017 ImageNet Champion

■ Squeeze-and-Excitation Networks



■ MobileNet V1



$$\frac{h_l \times w_l \times C_1 \times H_{out} \times W_{out} + C_1 \times C_2 \times H_{out} \times W_{out}}{h_l \times w_l \times C_1 \times C_2 \times H_{out} \times W_{out}}$$

$$= \frac{1}{N} + \frac{1}{h_l \times w_l}$$

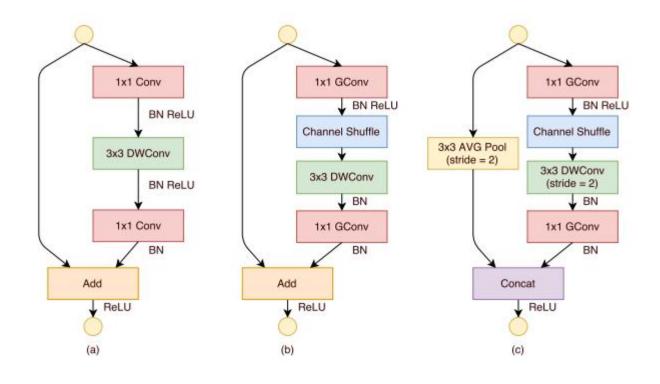
■ MobileNet V1

- Not efficient in practical computation
- Too many Conv 1×1 operators

Table 2. Resource Per Layer Type

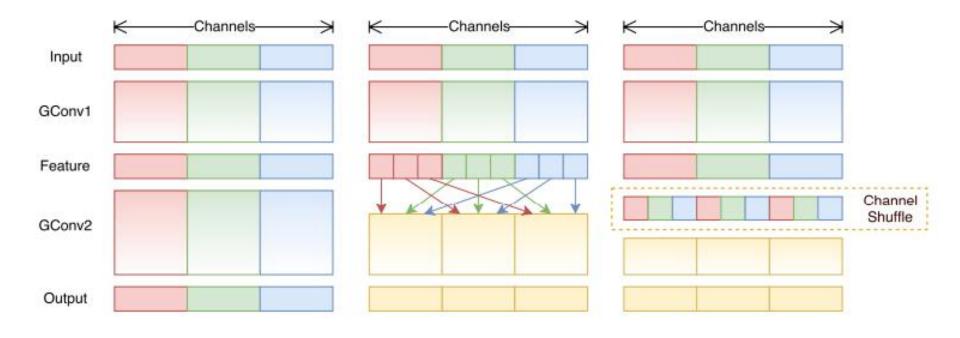
Type	Mult-Adds	Parameters
Conv 1 × 1	94.86%	74.59%
Conv DW 3 × 3	3.06%	1.06%
Conv 3 × 3	1.19%	0.02%
Fully Connected	0.18%	24.33%

- ShuffleNet V1
 - Group & Shuffle (for information interaction)



Before Training

- ShuffleNet V1
 - Group & Shuffle (for information interaction)



Before Training

- ShuffleNet V1
 - More group
 - Less Channel

Model	Complexity	Classification error (%)				
	(MFLOPs)	g = 1	g = 2	g = 3	g = 4	g = 8
ShuffleNet 1×	140	33.6	32.7	32.6	32.8	32.4
ShuffleNet 0.5×	38	45.1	44.4	43.2	41.6	42.3
ShuffleNet 0.25×	13	57.1	56.8	55.0	54.2	52.7

Table 2. Classification error vs. number of groups g (smaller number represents better performance)

Summary

■ Do it via channel/filter!

■ Ensure information flow!

■ Hardware-friendly

Thank you

