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Abstract—Although deep neural networks have shown well-performance in various tasks, the poor interpretability of the models is
always criticized. In the paper, we propose a new interpretable neural network method, by embedding neurons into the semantic
space to extract their intrinsic global semantics. In contrast to previous methods that probe latent knowledge inside the model, the
proposed semantic vector externalizes the latent knowledge to static knowledge, which is easy to exploit. Specifically, we assume that
neurons with similar activation are of similar semantic information. Afterwards, semantic vectors are optimized by continuously aligning
activation similarity and semantic vector similarity during the training of the neural network. The visualization of semantic vectors
allows for a qualitative explanation of the neural network. Moreover, we assess the static knowledge quantitatively by knowledge
distillation tasks. Empirical experiments of visualization show that semantic vectors describe neuron activation semantics well. Without
the sample-by-sample guidance from the teacher model, static knowledge distillation exhibit comparable or even superior performance
with existing relation-based knowledge distillation methods.

Index Terms—Neural network interpretability, semantic embedding, knowledge distillation

1 INTRODUCTION

As high-performance neural network models are gradually applied to
real scenarios, there is still a trust gap between human beings and
artificial intelligence. It is hard to completely hand over ourselves to
a non-interpretable model. In order to open the black box of neural
networks, the research of neural network interpretability has received
increasing attention. Existing methods mainly focus on analyzing the
prediction results of a trained neural network model. For instance,
given similar examples of the current sample [3, 4], point out the im-
portant attribute in the input sample [18, 24], perturbation analysis for
the neurons plays an important role in the specified task [6, 25], etc.
However, a single misjudgment in areas with high impact outcomes
such as autonomous driving, financial prediction, and medical diagno-
sis can mean a major accident. Even if we can trace back the input
that triggered the miscalculation afterwards or activated neurons at the
time of the wrong prediction, it is difficult to recover from the accident
that has already occurred. Therefore, how to give a sample- and class-
independent explanation of all neurons in a model before the model is
put into practice is a key issue to enhance the trustworthiness of neural
network models.

Existing interpretable methods do not provide a comprehensive
explanation of neurons. Making interpretations for the neurons corre-
sponds to semantic-based interpretation models. The classic method,
NetDissect [2], matches the activation of a neuron to an artificially
given semantic annotation in order to give a semantic interpretation
of the neuron. The experimental results show that one-third of the
neurons do not have a specific semantic meaning, while one neuron
may correspond to more than one semantic meaning. It is probably due
to the fact that many hidden patterns are not given semantics and there
is a correlation between semantics. In order to describe a neuron com-
pletely, we propose to embed the neuron as a semantic vector, rather
than assigning a single semantic tag. Once a neuron has a materialized
semantic vector, the knowledge of the neuron is extracted. Therefore,
the semantic relationship between different neurons is capable to be
intuitively compared, analyzed, and further exploited for many inter-
esting applications. For instance, can we use this extracted semantic
relationship as the static knowledge to instruct a student model for
knowledge transfer?

Traditional knowledge distillation approaches [9, 17, 21] employ a
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Fig. 1. Schematic diagram about neuron embedding and static knowl-
edge distillation. During semantic embedding, we assume that neu-
rons with similar activation have similar semantics, and vice versa in
knowledge transfer. By aligning activation similarity and semantic vec-
tor similarity in two independent phases, we achieve the embedding of
neuron semantics and knowledge distillation. The knowledge obtained
through semantic embedding is static and is not dependent on individual
instances or classes. It allows for an intuitive analysis and exploitation
of neuron global semantics. As the two steps in knowledge distillation
are capable to be decoupled, the knowledge transfer is achieved without
sample-by-sample guidance.

pre-trained high-performance teacher model to give the guideline of
each sample in the student model training. As two-stage distillation
requires high computation and storage costs, it is not efficient and not
scalable. Although teacher-free knowledge distillation methods have
been proposed, they almost perform as self-distillation [5, 7, 23]. By
focusing on the re-integration of information within the student model
or between peers, such methods do not enable directed knowledge
transfer across models. In contrast, The semantic vector of neurons
is regarded as the neuron-intrinsic global knowledge, which is not
dependent on individual samples or task classes. Such static knowledge
is potential information to be employed to directly instruct the student
model without sample-by-sample guidance from the teacher model.

In this paper, we propose to encode neurons into the semantic space
to extract a neuron-intrinsic task-independent global interpretation.
Specifically, we assign each neuron in the convolutional layer a unique
semantic vector. Neurons with similar activation for the same instance
are assumed to present similar semantics. The semantic vectors of the
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Fig. 2. Visualization of neuron similar relation. To show the alignment between semantic vector similarity and activation map similarity, we demonstrate
the activation maps of top-layer neurons and their three most similar neurons in different images. The similarity between neurons is directly measured
by the optimized semantic vectors. The ID of neurons is given. The activation area of neurons is covered by a light mask.

neurons are optimized by continuously aligning semantics with activa-
tion in stochastic gradient iterations. Based on semantic vectors, the
relationship between neurons can be explored intuitively by comparing
the similarity. Besides demonstrating the direct similarity between neu-
ron knowledge, we also investigate the additive relation between neu-
rons. Furthermore, we introduce the relationship between neurons by
semantic vectors as static knowledge to guide student models, achieving
a knowledge distillation without sample-by-sample guidance from the
teacher model. Ultimately, various visualizations qualitatively demon-
strate the plausibility of the interpretability given by neural semantic
vectors, while experiments on knowledge distillation across multiple
architectures quantitatively show the validity of the interpretability.

2 METHODOLOGY

In this section, we demonstrate how to embed the knowledge inside
neurons into the semantic space, and how to achieve a static knowl-
edge distillation without sample-by-sample guidances from the teacher
model.

2.1 Neuron Embedding

We embed neurons into the semantic space in the form of vectors, to
achieve a comprehensive representation of neuron semantics and the
potential to conveniently exploit global semantics. The top half of
Figure 1 visualizes the procedure of neuron embedding. Specifically,
for a pre-trained neural network model, we propose to abstract the
semantic information of each neuron into a semantic vector. Given a
specific semantic vector of the neuron in each layer, we assume that
neurons with similar activation maps for the same image should have
similar semantics, similar to Word2vec [13]. Therefore, the semantic
representations of neurons are optimized by continuously aligning ac-
tivation map similarity and semantic vector similarity during training.
For the neurons in the L layer, we randomly initialize their semantic
vectors SL ∈ RC×K , where C is the number of neurons in the L layer
and K is the dimension of the semantic vector. During the forward
processing of the neural network, neurons in the L layer give their
activation AL ∈ RC×wh. The similarity metric d(·) yields the pairwise
activation similarity d(AL,AL) and the pairwise semantic vector similar-
ity d(SL,SL), and the cosine similarity is used as the metric d(·) in this
paper. Eventually, the embedding loss matches the two similarities in
the framework of cross-entropy. The pairwise similarity value needs to

be processed via the softmax function h(·) to transform into probability
values in the cross-entropy loss.

Lembedding =−
1
L
· 1
C ∑

L
∑
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=− 1
L
· 1
C ∑

L
∑
i, j

h(d(AL,AL)) logh(d(SL,SL))

(1)

2.2 Static Knowledge Distillation
As the extracted neuron semantic vector is the static knowledge of
the neural network, we introduce the semantic relation-based informa-
tion as a prior to realize the decoupled two-stage knowledge transfer.
Compared with previous instance relation-based knowledge distillation
methods, the proposed method avoids sample-by-sample guidance from
the teacher model. There is only forward processing and backpropaga-
tion of the student model during knowledge distillation, as illustrated
in the bottom half of Figure 1. It provides a promising way for efficient
and scalable knowledge distillation. Specifically, in contrast to embed-
ding loss, we assume that neurons that are semantically similar in the
prior of the teacher model should have similar activations for samples.
Static knowledge distillation employs the similarity between neurons
as the target and the activation of the neural network as the variable. By
the cosine similarity measure, the pairwise similarity matrix d(SL,SL)
of the semantic vectors and the pairwise similarity matrix d(AL,AL) of
the activation maps in the corresponding layer of the student model are
calculated, respectively. Then, the softmax function h(·) probabilize
them. In the form of cross-entropy, the similarity of neuron semantics
and the similarity of neuron activation maps are re-aligned inversely to
obtain a priori guidance. The prior losses of all layers are averaged to
form a Static Knowledge Distillation loss LSKD. Finally, it is given a
balance coefficient β and combined with the cross-entropy Ltask of the
classification task to jointly optimize the student network.

LSKD =− 1
L
· 1
C ∑

L
∑
i, j

p( j|i) logq( j|i)

=− 1
L
· 1
C ∑

L
∑
i, j

h(d(SL,SL)) logh(d(AL,AL))

(2)

L = Ltask +β ·LSKD (3)



Table 1. Knowledge distillation experiments on CIFAR-100.

Teacher WRN-40-2 resnet56 resnet110 resnet110 resnet32x4 vgg13
Student WRN-16-2 resnet20 resnet20 resnet32 resnet8x4 vgg8

Teacher 75.61 72.34 74.31 74.31 79.42 74.64
Student 73.26 69.06 69.06 71.14 72.50 70.36

Logit-based KD 74.92 70.66 70.67 73.08 73.33 72.98
PKT 74.54 70.34 70.25 72.61 73.64 72.88
CRD 75.48 71.16 71.46 73.48 75.51 73.94

Feature-based

FitNet 73.58 69.21 68.99 71.06 73.50 71.02
AT 74.08 70.55 70.22 72.31 73.44 71.43
VID 74.11 70.38 70.16 72.61 73.09 71.23
AB 72.50 69.47 69.53 70.98 73.17 70.94
FT 73.25 69.84 70.22 72.37 72.86 70.58
NST 73.68 69.60 69.53 71.96 73.30 71.53

Relation-based

FSP 72.91 69.95 70.11 71.89 72.62 70.23
SP 73.83 69.67 70.04 72.69 72.94 72.68
CC 73.56 69.63 69.48 71.48 72.97 70.71
RKD 73.35 69.61 69.25 71.82 71.90 71.48
SKD(Ours) 73.79 70.23 70.27 71.86 72.91 71.09
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Fig. 3. Visualization of neuron additive relation. Through the guidance
of semantic vectors, the complementary combination of neurons with
simple semantics is discovered towards neurons with complex semantics

3 EXPERIMENTS

3.1 Experiment Setup

As the semantic information of neurons in neural networks is extracted
as vectors, It is a potential way to enable direct comparison of neuron
semantics, analysis, and benefit downstream tasks. Therefore, we
design qualitative and quantitative experiments to assess the optimized
vectors for the precise characterization of semantic relationships, the
combined representation of semantics, and the transfer of extracted
knowledge.

Interpretability experiments mainly focus on exploring the responses
of the ResNet18 model pre-trained on ImageNet to different patterns on
the Broden dataset [2]. The Broden dataset unifies 63305 color images
of several densely labeled image data sets, which are of pixel-level
semantic annotations. It contains examples of a broad range of objects,
scenes, object parts, textures, and materials in a variety of contexts.
The image size of the dataset is resized to 224×224. In addition, we
also compare the results of static knowledge distillation and existing
knowledge distillation methods across multiple architectures on the
cifar100 dataset. The CIFAR-100 dataset [12] contains 50,000 32×32
color images in 100 different classes for training.

3.2 Implementation Details
The semantic vector is extracted at the end of each block in neural
networks, and its dimension is 16. In all training, the batch size is
64, and the weight decay is 5e−4. The SGD optimizer with an initial
learning rate of 0.1 is adopted. It is accompanied by a 0.1× learning rate
decay at {50, 75, 90} during 100 epochs. In the knowledge distillation,
the balance coefficient β for static knowledge distillation is set as 5e−1

for most architectures, and 5e−2 in the knowledge transfer from VGG13
to VGG8. The knowledge distillation experiments follow the protocol
of CRD [19], and the results of comparison methods come from that
paper. The results of our method are the mean of three trials.

3.3 Qualitative visualization
3.3.1 Neuron Similar Relation
The neuron semantic vector represents the correlation between neurons
in the same layer. To intuitively assess whether such representation is
accurate, we employ qualitative visualization of neuron similar rela-
tions. We demonstrate the activation maps of top-layer neurons and
their three most similar neurons in different images, see Figure 2. The
similarity between neurons is directly measured by the optimized se-
mantic vectors. We do not limit the semantics of images. It can be seen
that even in images with different semantics, the neurons with similar
semantic vectors reflect similar activation. This proves that the semantic
vector is a comprehensive representation of neuronal information.

3.3.2 Neuron Additive Relation
We exploit the additive relation between neuron semantic vectors, fol-
lowing Word2vec. The neuron semantic vectors are pairwise added.
Then, the similarity is directly calculated between the combined seman-
tic vector and the vector in the original space. Since the pre-trained
model is not subject to interpretability constraints, some neurons show
polysemy, as shown by target neurons in Figure 3. Since the semantic
vector represents the comprehensive semantics of neurons, through its
guidance, we can discover the complementary combination of neurons
with simple semantics towards neurons with complex semantics.

3.4 Quantitative metric
There is no ground truth for the neuron semantic vectors. However, Net-
Dissect [2] assigns semantics to neurons based on their responses to the
pixel-wise annotated image dataset. Inspired by that, we concatenate
the response degree (i.e., intersection-over-union score) of the neuron to
all semantics in the Broden dataset as the target of the neuron semantic
vector. The quantitative metric of the semantic vector is measured by
the KL divergence as the distribution distance between the optimized
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Fig. 4. KL curve during the training. Although the proposed neuron
embedding method is unsupervised, the optimized semantic vectors are
able to spontaneously converge to manually annotated semantic vectors.

semantic vectors and the target semantic vectors. Figure 4 illustrates
the variation of the KL divergence during the training process. Since
there is no directly relevant comparison algorithm, we only exhibit the
result of random initialized semantic vectors as the baseline and the
semantic vector optimized directly for such KL divergence as the upper
bound. Without supervised information, the KL divergence curve in
Figure 4 decreases continuously during the training. It shows that the
optimized semantic vector indeed encodes the semantic information of
the neurons.

3.5 Knowledge Distillation
As knowledge distillation transfers knowledge from the large model
to the small model, the improvement in classification accuracy of the
small model could reflect the performance of knowledge distillation
algorithms. As listed in Table 1, we compare the proposed method
with existing knowledge distillation algorithms in six types of cross-
architectural knowledge migration tasks on the CIFAR100 dataset. The
comparison methods include logit-based, feature-based and relation-
based knowledge distillation algorithms, such as KD [9], PKT [15],
CRD [19], FitNet [17], AT [22], VID [1], AB [8], FT [11], NST [10],
FSP [21], SP [20], CC [16], and RKD [14]. The proposed static
knowledge distillation is of a comparable or even better performance
with existing relation-based knowledge distillation methods, without
sample-by-sample guidance from the teacher model. It verifies the
effectiveness of such an efficient and scalable knowledge distillation
method.

4 CONCLUSION

In this paper, we propose a global interpretable method of neural net-
works, by embedding neurons into semantic space. With such static
knowledge, we achieve decoupled two-stage knowledge distillation
without sample-by-sample guidances from the teacher model. To this
end, we align the relationship between neuron activation maps with
the relationship between neuron semantic vectors. Such alignment is
inversely applied from abstracted semantic vectors to neuron activation
maps of the student model in the knowledge distillation. Qualitative and
quantitative experiments have demonstrated that the proposed method
describes neuron semantics well. Moreover, the static knowledge distil-
lation shows its comparable or even superior performance compared
with existing algorithms.
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