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Synchronization-inspired Interpretable Neural
Networks

Wei Han, Zhili Qin, Jiaming Liu, Christian Böhm, Junming Shao*

Abstract—Synchronization is a ubiquitous phenomenon in
nature that enables the orderly presentation of information.
In the human brain, for instance, functional modules such as
the visual, motor, and language cortices form through neuronal
synchronization. Inspired by biological brains and previous
neuroscience studies, we propose an interpretable neural network
incorporating a synchronization mechanism. The basic idea
is to constrain each neuron, such as a convolution filter, to
capture a single semantic pattern while synchronizing similar
neurons to facilitate the formation of interpretable functional
modules. Specifically, we regularize the activation map of a
neuron to surround its focus position of the activated pattern
in a sample. Moreover, neurons locally interact with each other,
and similar ones are synchronized together during the training
phase adaptively. Such local aggregation preserves the globally
distributed representation nature of the neural network model,
enabling a reasonably interpretable representation. To analyze
the neuron interpretability comprehensively, we introduce a series
of novel evaluation metrics from multiple aspects. Qualitative
and quantitative experiments demonstrate that the proposed
method outperforms many state-of-the-art algorithms in terms of
interpretability. The resulting synchronized functional modules
show module consistency across data and semantic specificity
within modules.

Index Terms—Interpretable Neural Networks, Synchroniza-
tion, Active Interpretability, Interpretability Metrics.

I. INTRODUCTION

Current deep neural network models (e.g. VGGNet,
ResNet) are widely recognized as complex learning sys-

tems with an extremely large number of connections. Despite
their excellent performance on various tasks, their internal
knowledge and predictions are often difficult to interpret. The
black-box property limits their further development and real-
world applications, particularly in fields such as medicine and
finance where results require careful consideration. Compared
to biological brains, the success of deep neural network models
is largely due to their large number of parameters and massive
training data, while their network structures are relatively
simple. The study of neural network interpretability has thus
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C. Böhm is with the Institute of Informatics, Ludwig Maximilian University
of Munich, Germany (E-mail: boehm@ifi.lmu.de).

*Corresponding author: Junming Shao (junmshao@uestc.edu.cn).

Youth Adult

Modular 

Segmentation

Synchronization

Fig. 1. Illustration of functional module formation in human brains via
neuronal synchronization during aging. Here the motifs with different colors
indicate distinct functional modules such as the visual cortex and motor cortex.

gained increasing attention in recent years. Instead of con-
centrating on the post-hoc interpretability of a trained neural
network [1], [2], in this study, we introduce a new concept:
synchronization, to improve the learning and interpretability
of the artificial neural network.

Synchronization is a fundamental phenomenon in which
a group of events spontaneously come into co-occurrence
with a common rhythm, despite differences in their individual
rhythms. It is ubiquitous in human life, occurring in every-
thing from metabolic processes in our cells to the highest
cognitive tasks we perform as individuals within a group
[3]. Emerging evidence of synchronization has been found
in many neuroscience studies. For instance, cortical columns
have been shown to contain neurons that respond to similar
information [4], while groups of visual cortex neurons spon-
taneously synchronize together to perform similar functions
in the human brain [5]. As synchronized neurons continually
reinforce their connections, the brain network gradually seg-
ments into functional modules [6]. Figure 1 provides a simple
illustration of functional module formation in human brains via
neuronal synchronization during aging. The modular structure
of the human brain provides many desirable properties, such
as energy-efficient processing (i.e., a small-world network
structure with a high clustering coefficient and low average
path length) [7], robustness against damage by mutation or
viral infection [8], and high interpretability (i.e., each module
is often associated with a specific function) [9].

Synchronization promotes reasonable and sparse representa-
tion, enhancing the performance and interpretability of neural
networks. Following the synchronization mechanism, neurons
that respond to similar patterns interact with each other and
adaptively aggregate into functional modules. The local ag-
gregation of individual neurons does not significantly reduce
the globally diverse response of all neurons to semantics.
Such locally compact and globally distributed properties result
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Fig. 2. Illustration of synchronization-inspired neural network. (a) A bird image. (b) The response of each neuron (i.e., the activation map of each convolutional
filter in CNN) is constrained to a local continuous region with the loss of local activation consistency. (c) The activation points of filters in (b). During training,
the activations of similar neurons (represented as neighboring activation points) are gradually synchronized together with synchronization loss. (d) After training,
similar neurons are aggregated to achieve neuronal synchronization. (e) The activations of similar neurons form functional modules to capture the high-level
semantics. (f) The visualization of functional module activation overlayed in the original bird, showing natural interpretability (i.e., each module activation
corresponds to the bird’s eye, abdomen, tail, and feet, respectively).

in a reasonable representation. The previous work [10] has
demonstrated that the model with the best performance is of
proper clustering coefficient and average path length, which
is consistent among different data sets and neural network
structures. Surprisingly, it is also similar to the real biological
neural network. Additionally, the process of gathering scat-
tered neurons into functional modules brings sparseness in
model representation, allowing neurons to focus on meaningful
semantics. Furthermore, compared to probing each neuron,
investigating a small number of functional modules benefits
the understanding of complex models. It alleviates gray-boxing
of the interpretable model caused by excessive information and
thus is a promising way.

In this study, we aim to generalize the concept of syn-
chronization to construct an interpretable neural network. The
key idea is to constrain each individual neuron to learn a
simple semantic pattern, and group similar neurons together to
form interpretable functional modules automatically. By con-
straining neuron activation consistency around a focus point,
neurons will exhibit simple and clear functions. As illustrated
in Fig. 2, for a given bird image, each convolutional filter (i.e.,
a neuron) activates a continual local image region to capture
one semantic pattern of the bird only (e.g., bird’s eye). Mean-
while, similar neurons are expected to synchronize together to
form interpretable functional modules and thus allow capturing
a higher semantic pattern. For instance, some convolutional
filters activate neighboring image regions together to capture
the bird’s head in Fig. 2. Relying on the powerful concept
of synchronization, the proposed interpretable neural network
has many desirable properties, which are mainly summarized
as follows.

• Biological viewpoint. Motivated by the advantages of
biological systems, the inherited synchronization mecha-
nism is first introduced to improve the interpretability of
neural networks.

• Automatic functional module formation. Thanks to
the synchronization-based clustering for automatic neu-
ron aggregation, our proposed method allows forming
interpretable functional modules to capture high-level
semantic patterns.

• High interpretability. In contrast to the post-hoc inter-
pretability of a trained neural network, the resulting inter-
pretable functional module of our method lends itself to

good interpretability. Extensive experiments have further
demonstrated its superior interpretability compared with
many state-of-the-art algorithms.

II. RELATED WORKS

A. Neural Network Interpretability

The network interpretability benefits understanding the
behavior of the neural network. Existing interpretability
works [2] mainly focus on the post-hoc interpretability of
a trained neural network. According to the type of explana-
tions, they are divided into example-based, attribution-based,
hidden-semantics-based, and rule-based categories. A local
or global instance-based interpretation could be given via
similar cases [11] or prototypes [12]. Key instances were
proposed to be evaluated by measuring the parameter influence
of removing them from the training set [13]. The goal of
attribution-based interpretation methods is to figure out key
features. Shapley value [14] is adapted from the game theory
for a solution to the payoff assignment problem of attributions.
Sensitivity analyses [15], [16] probe the feature importance
by introducing disturbances. Visualization methods, such as
Class Activation Map [17], [18], intuitively display attribution
contributions. The hidden semantics-based method focuses on
exploring semantic patterns in units of the network. Network
dissection [19] takes the intersection between feature maps and
annotations as the index, counting the selectivity of units to se-
mantic parts. However, the correspondence between units and
semantics is overlapping. Therefore, the semantics is proposed
to be represented properly by the vector embedding based on
the weights of units [20]. The rule-based explanation explains
the behavior of complex models by simple rules. The common
method is the surrogate model, which analogies a complex
neural network model locally [21], [22] or globally [23], [24]
as a simple model to achieve interpretability. In addition to
image data, interpretable methods also have applications in
other data modalities such as time series data [25], graph
data [26], and heterogeneous data [27]. However, the post-
hoc method is only capable to provide information in the
existing model and cannot disentangle the units and semantics.
In contrast, we focus on active interpretability models which
provide a potential solution to the problem.
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B. Active interpretability Models

Active interpretability models achieve model-intrinsic inter-
pretability by regularizing model complexity. Involved in the
training process, they are capable to improve semantic repre-
sentation in the model. However, it is still an open question.
A prototype layer [28], [29] is introduced to make predictions
with case-based interpretability. By dividing task samples
based on expert knowledge or category hierarchy, the trans-
parent design of the model is realized in reinforcement learn-
ing [30], visual question answer [31] and image classification
tasks [32]. Attribution-based active interpretability constraints
are employed to improve interpretability on metrics [33],
introduce attribution priors [34], or select feature subsets [35],
[36]. As tree models are intuitive interpretable models, tree
constraints [37], [38] are added to model training to achieve
rule-based active interpretability models. Hidden-semantics-
based active interpretation methods focus on regularizing neu-
rons in neural networks, such as filters in convolutional neural
networks. Assigning filters to specific classes, CSGCNN [39]
and Decoup [40] alleviate filter-class entanglement during
training. icCNN [41] computes the prior filter cluster structure
before each epoch and encourages such cluster structure in
the training. Introducing additional semantic categories as
concepts, Concept Whiten [42] aligns model representations
with those concepts. ICNN [43] clarifies filter representations
in high conv-layers of CNNs by minimizing the mutual infor-
mation between filter feature maps and Gaussian templates. In
the study, we employ the synchronization mechanism to aggre-
gate neurons with clear and simple functions into functional
modules spontaneously, achieving reasonable interpretability
of network representation.

C. Interpretability Metrics

Due to the lack of a specific definition of interpretability,
there are various and messy interpretability metrics. Since
each interpretability method gives explanations from different
perspectives, the readability [44] of given explanations to
human beings is a concern. Plausibility [44], [45] means
how convincing the interpretation is to humans, while faith-
fulness [46], [47] measures how accurately it reflects the
true reasoning process of the model. As the two notations
are conflated in some works [48], [49], [50], an article [51]
proposes to make a distinction between the two criteria for
potential users. Another concept is fidelity [21], [22], which
evaluates how well the explanation approximates the predic-
tion of the black-box model. Stability [52], [53], [54] under
perturbation of interpreted parts is also a side basis for in-
terpretation assessment. As for active hidden-semantics-based
interpretability, the main interpretability metric is the object-
part interpretability of filters [19], [43], [39]. It is defined
based on the IoU between activation and pixel-wise annotation.
Based on the distance from landmarks, the standard deviation
is used to determine instability [43]. The entropy is introduced
to measure inconsistency [41], and the sliding curve is used
to show the trade-off relationship between multiple metrics
of the interpretable model. In this study, we integrate several

Cluster 1
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Fig. 3. Illustration of Synchronization-based clustering. The static data
as phase oscillators consistently interact with others. Neighbors within the
radius ϵ attract each other, resulting in multiple synchronized clusters. The
synchronization mechanism ensures a globally distributed data structure while
reducing local data complexity.

filter interpretability metrics into the entropy framework and
assess interpretability from multiple aspects.

III. METHODOLOGY

In this section, we demonstrate a synchronization-inspired
active interpretability model. We first introduce the basic
concept of synchronization and its mathematical formulation
as Preliminary in Section III-A. Then, the two parts of the
proposed method are described in detail, including the local
activation consistency constraint in Section III-B and the
synchronization constraint in Section III-C. Finally, we present
a series of quantitative metrics for active hidden-semantics-
based interpretability in Section III-D.

A. Preliminary

To understand the synchronization concept and simulate its
dynamics, many models have been proposed, e.g., the well-
known Kuramoto model [55]. In this study, we extend the
idea of synchronization-based clustering algorithms, such as
SynC [56], to automatically group together similar neurons.
The clustering by synchronization approach is to view each
data object as a phase oscillator, with its feature vector
representing its phase. By simulating the dynamic behaviors
of these objects over time and their interaction with similar
objects, the phase of an object gradually aligns with its
neighbors, resulting in non-linear object movement driven by
the local cluster structure. Ultimately, the objects in a cluster
become synchronized, sharing the same feature vector (as
illustrated in Fig. 3). Formally, let x ∈ Rd be an object in the
data set D and xi(t) be its i-th dimension at time t respectively.
The algorithm first identifies its ϵ-range neighbors Nbϵ(x(t))
and then simulates the dynamics of each dimension xi of the
object x over time.

Nbϵ(x) = {y ∈ D|dist(y, x) ≤ ϵ} (1)

xi(t+ 1) = xi(t) +
1

|Nbϵ(x(t))|
·

∑
y(t)∈Nbϵ(x(t))

sin (yi(t)− xi(t))
(2)

Here, |Nbϵ(x(t))| is the neighbors number of the object x(t).
When applying synchronization to neural network models,
some adaptations are necessary. Firstly, neurons have no spe-
cific semantic encoding as objects but only respond to specific
samples. To achieve the aggregation of their functions, we
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need to impose constraints on the neuron responses. Secondly,
the parameters in the neural network constantly vary with
iterations, just as the input samples do. In random iterations,
the responses of all neurons may become neighbors to each
other at some point, leading to an undesirable reduction in
representational diversity of the neural network models [57].
To alleviate this problem in a dynamic environment, another
force is needed to preserve diversity in the representation.

B. Neuronal Local Activation Consistency
To construct the synchronization-inspired interpretable neu-

ral network, the first key point is to ensure that the semantics
of neurons are simple and clear. In a convolutional layer of a
neural network, we take the feature map A(f) of the outputs as
the activation of the filter f . Since a semantic pattern usually
corresponds to only one part of the data (e.g., the bird’s eye
is only one part of the image in Fig. 2), the feature map
of each convolutional filter (i.e., each individual neuron) is
thus supposed to be partially activated. In addition, another
intuitive hypothesis on image data is that a semantic pattern
always appears in a continual local area. For instance, in Fig.
2, the bird’s eyes are located in the left-upper part of the
image. If the filter is designed to capture the semantics of the
bird’s eye, the activation map of this filter should cover only
the continual pixels of the eye. Therefore, we heuristically
constrain the activation of a filter to concentrate in a single
region, which is assumed to represent one object part. We refer
to this constraint as neuronal local activation consistency.

Formally, given an image, let A(f) = {a1(f), a2(f), · · ·
, aM (f)} be the activation map of a filter f at the convolution
layer in a neural network, and let the corresponding acti-
vated location vector be X(f) = {x1(f), x2(f), · · · , xM (f)},
where xm(f) is the two-dimensional coordinate of m-th
element on the activation map. The expectation of the ac-
tivation position of a given activation map is calculated as
x̄(f) = Em∼q(am(f))(X(f)). The neuronal local activation
consistency constraint is to regularize each activation point
xm(f) to be close to x̄(f) to achieve a continuous local
activation area. To this end, the activation consistency loss
is defined as the cross-entropy-like distribution divergence
between the actual activation probability q(xm(f)) and the
expected activation probability p(xm(f)|x̄(f)).

Llac = − 1

N

∑
f

∑
m

p
(
xm(f)|x̄(f)

)
log q

(
xm(f)

)
(3)

Here, N is the number of filters in the target convolution
layer. p

(
xm(f)|x̄(f)

)
is the activation probability of m-th

position element on the condition of x̄(f). Intuitively, the
closer xm(f) is to the expectation of the activation position
x̄(f), the higher the activation probability. Thereby, we define
the expected activation probability p(xm(f)|x̄(f)) using the
softmax operation applied to the distance, as follows.

p
(
xm(f)|x̄(f)

)
=

e−dist
(
xm(f),x̄(f)

)
∑

n e
−dist

(
xn(f),x̄(f)

) (4)

where the Euclidean distance dist(·) is employed in this study.
It is based on the softmax function which normalizes the value

with the sum of activation values across every position n.
Meanwhile, the actual activation probability q(xm(f)) at each
location m is calculated directly from the activation map A(f).

q
(
xm(f)

)
=

eam(f)∑
n e

an(f)
(5)

As activation positions are close to the activation position
x̄(f), each neuron (i.e., a filter f ) tends to capture one
semantic pattern by activating a continual local area.

C. Interpretable Functional Module Formation with Neuronal
Synchronization

The synchronization mechanism is a powerful and intrinsic
concept in the human brain that automatically groups similar
neurons together. Inspired by neuroscience studies, we aim
to introduce this mechanism into artificial neural networks.
In neuronal synchronization of neural networks, neurons that
process similar functions are aggregated to form functional
modules that represent high-level semantics. In the study, we
define the function of a neuron as the expected semantic
response when processing information from all samples. Thus,
the semantic response in a single sample can be seen as a
sampling of the neuron function, and the aggregation of neuron
functions on the global level is achieved by synchronizing in
the continuous sampling. Compared to the constraint on pre-
defined filter clusters [41], which is based on statistics from the
entire training set, the synchronization mechanism adaptively
segments functional modules.

Building upon the neuronal local activation consistency
constraint, each neuron is now capable of capturing a single
semantic pattern. To reduce the computational cost, we adopt
the neuron’s response position x̄ on the sample to represent
its response. In each iteration, neurons with similar functions
are expected to have similar response positions. Similar to
synchronization-based clustering, where similar objects are
grouped together by aligning with their ϵ-neighborhoods, we
propose the synchronization loss to encourage neurons that
are neighbors to have a higher mutual activation probability in
one sampling. We denote the co-activated probability between
neurons within the ϵ-neighborhood as p(fj |fi), and the mutual
activation probability as q(fj |fi).

Lsync = −
∑
fi

∑
fj∈Nbϵ(fi)

p(fj |fi) log q(fj |fi) (6)

Formally, we first define the neuronal co-activation probabil-
ity p(fj |fi) by the uniform distribution of the ϵ-neighborhood
regarding the filter fi during forward information processing.
Here, the ϵ-neighborhood is a hard division based on the
distance between the activation position of filters fi and
fj . When the filters fi and fj are co-activated at a nearby
position, we assume that they process similar information and
strengthen their relationship (i.e., the mutual activation prob-
ability q(fj |fi)). The closer the neuronal activation positions
are, the more likely they are to synchronize with each other.

p(fj |fi) =
1

|Nbϵ(fi)|
(7)
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q(fj |fi) =
e−dist

(
x̄(fi),x̄(fj)

)
∑

fj
e−dist

(
x̄(fi),x̄(fj)

) (8)

To understand the synchronization constraint, we conduct
a further derivation of the synchronization loss. It could be
decomposed into two parts, including the pull on ϵ-neighbor
elements and the push on overall elements. This approach
ensures the aggregation of local information while avoiding
the collapse of global representations.

Lsync = −
∑
fi

∑
fj∈Nbϵ

p(fj |fi) log q(fj |fi)

= −
∑
fi

∑
fj∈Nbϵ(fi)

1

|Nbϵ(fi)|
log

e−dist
(
x̄(fi),x̄(fj)

)
∑

fj
e−dist

(
x̄(fi),x̄(fj)

)
=

1

|Nbϵ(fi)|
∑
fi

( ∑
fj∈Nbϵ(fi)

dist
(
x̄(fi), x̄(fj)

+ log
∑
fj

e−dist
(
x̄(fi),x̄(fj)

))
(9)

Finally, the proposed method optimizes the interpretable
neural network model by jointly considering the cross en-
tropy loss of the classification task Lce, the local activation
consistency loss, and the synchronization loss, with balance
coefficients λ1 and λ2, respectively.

L = Lce + λ1Llac + λ2Lsync (10)

D. Various Metrics of Interpretability

In previous works, the mean object-part interpretability of
neurons [19], [43], [39] is adopted to assess hidden-semantics-
based interpretability, which is based on the intersection-
over-union score (IoU). The IoU score provides a similarity
measurement between part mask annotations and the recep-
tive field of convolutional filters. Specifically, the IoU score
between filter f and the k-th part on the image I is defined as
IoU I

f,k = |SI
f ∩ SI

k |/|SI
f ∪ SI

k |, where SI
f and SI

k denote the
part region of filter f and the ground-truth mask of the k-th
part, respectively. Based on such a definition, the mean object-
part interpretability gives the probability of a filter associating
with a specific semantic part. In accordance with previous
work [43], we assign filter f to the k-th part in image I if
IoU I

f,k > ϕ, where ϕ is the assigning threshold. The object-
part interpretability of filters is calculated by reporting the
highest probability among all parts across all images.

Interp(f) = max
k

meanII
(
IoU I

f,k > ϕ
)
, (11)

where I(condition) is an indicator function, which is 1 if
the condition satisfies and 0 otherwise. Please note that the
filter interpretability in the previous work [43] is calculated
with the filters that are assigned to specific classes in multi-
category classification. However, we choose not to split filters
in the study to obtain a comprehensive result. For example,
if 512 filters are assigned to 200 classes in the CUB200 data
set, some classes may be associated with many filters, while
other classes may not have any.

In addition to the direct interpretability metric, we introduce
entropy-based metrics to assess interpretability from various
perspectives. First, the stability of the interpretability is con-
sidered. It measures whether the filter associates with specific
patterns stably. The entropy H(·) means the degree of chaos,
and the entropy in the Stability metric would be low if a filter
is consistently associated with one semantic part among all
images. Second, we investigate whether a filter only focuses
on one part of one image. The Purity metric calculates the
entropy of the responded parts of the filter. Although this
interpretability measure may be high, it would be meaningless
if all filters only focus on one or a few semantic parts.
Therefore, we take the entropy of activated parts on an image
as the Diversity metric to demonstrate the coverage of network
activations on global semantic parts.

Stability(f) = Hk

(
meanI1(IoU

I
f,k > ϕ)

)
(12)

Purity(f) = meanI

(
Hk

(
1(IoU I

f,k > ϕ)
))

(13)

Diversity(I) = Hk

(
maxf 1(IoU

I
f,k > ϕ)

)
(14)

The values fed into the entropy function are normalized via
dividing by their summed value, while the calculated entropy
values are normalized to [0, 1] via dividing by the biggest
value, namely, the entropy of the uniform distribution.

In terms of the data set with only landmark annotations, we
take the negative distance between filter focus and landmarks
as the similarity measure SimI

f,k, instead of IoU I
f,k in the

metric calculation. However, this similarity based on the
distance between the filter focus and landmarks is equivalent
to identifying coverage upon a circle that takes the landmark
as the center and ϵ as the radius. The shape of semantic parts
is always not circular, and the positions of some semantic
objects may overlap. Metrics based on this similarity measure
can easily fall into the extreme case of highly overlapping
or exclusive. Therefore, inspired by the previous work [41],
we introduce a sliding assigning threshold and compare the
changes of metric-pair curves to perform an assessment in the
datasets with landmark annotations.

IV. EXPERIMENTS

A. Experimental Setup

1) Data sets: In this study, we select four real-world
datasets with part mask/landmark annotations, including
the PASCAL VOC Part dataset [58], the CUB200-2011
dataset [59], the ILSVRC 2013 DET Animal-Part dataset [60],
and the BORDEN dataset [19]. Since the BORDEN data
set does not have multi-classification task labels, we train
the model in Imagenet-100 [61] and verify its interpretability
on the BORDEN dataset. Following the protocol [43], there
are 4 or 5 coarse semantic parts of six animal categories
annotated in the PASCAL VOC Part dataset. The objects
whose size is bigger than 50×50 are cropped. Meanwhile, the
BRODEN dataset contains over 60,000 images with pixel-level
and image-level annotations for 1,197 fine-grained concepts.
The Imagenet-100 is a subset of the ILSVRC dataset [62].
We use 30 animal categories in the ILSVRC DET dataset for
training and testing. The ground-truth positions of the head,
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Fig. 4. Illustration of filter activation map of different methods. Here we select the activation maps at 95, 70, and 30 percent quantiles of IoU to show as
the great, good, and bad activation maps, respectively. The proposed method enables a single neuron to respond to a single region, which is specific for a
semantic part.

the back, and the tail of birds in the CUB200 dataset are
employed as landmarks, while the annotations of the head and
frontal legs in the ILSVRC DET Animal-Part dataset are given
as landmarks. However, the annotation in the ILSVRC DET
Animal-Part dataset is sparse, we adopt all annotated training
and testing data for the quantitative interpretability evaluation.
The input images of all datasets are 224 × 224. The training
and testing splits are based on given split files of downloaded
data sets.

2) Comparison Methods: The proposed method aims to
achieve a hidden semantics-based interpretability of neural
networks. We compare it against state-of-the-art methods,
including the following baselines: (1) Baseline serve as the
backbone for all methods, including two classic architectures:
VGG16 [63] and ResNet18 [64]; (2) CSGCNN [39] trains

interpretable convolutional neural networks by differentiating
class-specific filters; (3) CW [42] whiten the representation
based on additional concept samples; (4) Decoup [40] employs
hard activation routing to show the information processing
of neural networks and supervises learning of interpretable
information based on class labels. (5) icCNN [41] encourages
pre-defined filter clusters in the kernel space to regularize
filters to represent semantic parts consistently and diversely;
(6) ICNN [43] minimizes the mutual information between
filter feature maps and Gaussian templates to clarify filter
representations in high conv-layers of CNNs.

3) Evaluation Metrics: Besides the filter interpretability
(Interp.) measure, a series of metrics are also adopted to
assess the interpretability from various aspects, consisting
of Stability, Purity and Diversity. Meanwhile, we employ
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Fig. 5. Average feature maps of all filters among different models. Due to the concentration of individual neuron responses and the local aggregation of
neuron functions, the global average activation map of the proposed neural network exhibits pure, accurate, and diverse properties.

classification accuracy as the fundamental metric to illustrate
the effect of different interpretable constraints on the model
performance.

4) Experimental Settings: All models in this study employ
the baseline model as the backbone which is pre-trained with
ImageNet images, and the base task is the multi-category
classification. The interpretable layer is set to be the top convo-
lutional layer, and the classification part is a fully connected
layer. The quantitative interpretability metrics are calculated
based on the activation of all filters in the interpretable layer.
Since the classic method ICNN1 does not offer the code of
interpretability evaluation, we adopt the corresponding code
of CSGCNN2 to evaluate the filter object-part interpretability.
As comparison methods do not provide a well-trained model
and the results of metrics introduced in the paper, we re-
run the comparison methods with official codes on GitHub.
Besides the implementation of the proposed method3, the
results of algorithms presented in the paper are based on the
same training setting. However, the data setting in the ICNN
code limits its multi-category experiment on CUB200 and
ImageNet-100 datasets. Meanwhile, the official code is based
on the SimpleNN framework in MATLAB, which does not
support ResNet. As a result, it cannot be directly transformed
into the backbone of ResNet. For a fair comparison, the extra
mask operation of ICNN for activation maps is not adopted
in interpretability evaluation, and the hard routing layer of
Decoup is only applied to the target layer. Meanwhile, the

1https://github.com/zqs1022/interpretableCNN
2https://github.com/hyliang96/CSGCNN
3Our codes with interpretability evaluation are provided in the supplemen-

tary material and will be released to GitHub after the paper is accepted.

sparse constraint in Decoup will greatly impair interpretability,
and therefore, we set its balance coefficient to 0. Apart from
ICNN being run on Matlab 2018b, all other experiments are
implemented by Pytorch 1.5.0 and run on an RTX 2080Ti card
under Ubuntu 18.04.

5) Implementation Details: In the training, the SGD op-
timizer with an initial learning rate of 0.01 is adopted. It is
accompanied by a 0.1× learning rate decay at {50, 75, 90}
during 100 epochs. The batch size is set as 32 for VGGNet
and 64 for ResNet, and the weight decay is 5e−4. The ϵ
for neighbor identification is assigned as 0.03. The λ1 for
neural local activation consistency loss is 0.2, while λ2 for
synchronization loss is 0.1. These two parameters were halved
in ResNet, with λ1 set to 0.1 and λ2 set to 0.05. Another
halving occurs in the multi-classification task of ImageNet-100
for both architectures. In the mask-based evaluation, we fix the
assigning threshold ϕ of 0.2 for animal datasets and 0.04 for
the BORDEN dataset. In the landmark-based evaluation, we
vary the assigning thresholds to obtain the metric-pair curves.

B. Qualitative Evaluation Results

1) Interpretability of Individual Neuronal Activation: To
gain insight into filter interpretability, we provide an intu-
itive demonstration of individual activations by visualizing
the receptive field of filters. The computation of the filter
receptive field follows the method [19], which scales up the
valid feature map to the image resolution. We select filters in
various conditions according to a unified standard to showcase
the interpretability of different methods on the same image.
Specifically, the activation maps at the 95th, 70th, and 30th
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TABLE I
QUANTITATIVE RESULTS OF DIFFERENT ALGORITHMS UPON VARIOUS INTERPRETABILITY METRICS ON THE VOC PART DATASET.

Method VGG16 ResNet18

Interp.↑ Stability↓ Purity↓ Diversity↑ Interp.↑ Stability↓ Purity↓ Diversity↑

V
O

C
Pa

rt

Baseline 0.4613 0.5526 0.0614 0.8845 0.4388 0.5371 0.0667 0.8905
CSGCNN 0.5055 0.5202 0.0698 0.8539 0.3311 0.5294 0.0452 0.8733
Decoup 0.4571 0.5242 0.0577 0.8626 0.3704 0.5121 0.0474 0.8880
CW 0.4218 0.4743 0.0411 0.6542 0.3114 0.5378 0.0289 0.8730
IcCNN 0.4505 0.5492 0.0556 0.8790 0.4464 0.4886 0.0723 0.8612
ICNN* 0.4991 0.4970 0.0581 0.3409 - - - -
Ours w/o sync 0.6825 0.4593 0.0810 0.6950 0.7282 0.4431 0.0965 0.5128
Ours 0.6418 0.4346 0.0511 0.8203 0.6598 0.4290 0.0652 0.7452

B
O

R
D

E
N

Baseline 0.2171 0.0018 0.1773 0.7915 0.4210 0.0017 0.3742 0.7643
CSGCNN 0.2432 0.0015 0.1829 0.8530 0.3958 0.0018 0.3268 0.8235
Decoup 0.2321 0.0019 0.1751 0.7284 0.4150 0.0018 0.3671 0.7769
CW 0.2497 0.0054 0.2025 0.9130 0.3646 0.0013 0.3105 0.1979
IcCNN 0.2304 0.0128 0.1590 0.8569 0.4013 0.0016 0.3337 0.8149
ICNN* - - - - - - - -
Ours w/o sync 0.3323 0.0015 0.2258 0.6512 0.4441 0.0021 0.3902 0.7567
Ours 0.3156 0.0012 0.1697 0.7529 0.4621 0.0017 0.3417 0.7762

* The official code is based on the SimpleNN structure in MATLAB, which does not support ResNet. Meanwhile, its
data setting focuses on single classification tasks and does not support large-scale multi-classification experiments, such
as CUB200 and ImageNet-100.

(a) VGG16 as backbone on CUB200-2011 Dataset (b) ResNet18 as backbone on CUB200-2011 Dataset

(c) VGG16 as backbone on ILSVRC Part Dataset (d) ResNet18 as backbone on ILSVRC Part Dataset

Fig. 6. Interpretability metric-pair curves in datasets with landmark-based annotations.

percentiles of the IoU score are chosen as representative of
great, good, and bad activations, respectively.

Fig. 4 depicts filter receptive fields in top conv-layers of
an interpretable neural network trained for multi-category
classification. In the baseline model, the filter cover mul-
tiple semantic parts and produce multiple activation areas.
Meanwhile, CSGCNN and Decoup only clarify the class-
filter relationship without constraining features, resulting in
scattered filter responses. This unclear situation is even more
obvious on the filter activation map of CW, which may be
that the inappropriate selection of the concept category will
make the features whiten in an undesirable direction. The

filters in icCNN are encouraged to be different in different
filter groups. The content of activation maps in ICNN is
more concentrated than the one in other algorithms, since
it regularizes the model with Gaussian templates. Moreover,
the proposed method considers both the effects within and
between filters. As shown, the response of a single filter
focuses on a specific semantic object, and multiple filters show
distributed representations.

2) Interpretability of Functional Module: To further ex-
plore the global effects of functional modules in neural net-
works, we visualize the overall activation of the high-level
convolution layer in image processing. Figure 5 shows the
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Fig. 7. Parameter sensitivity analysis on VOC Part dataset.

TABLE II
THE MULTI-CATEGORY CLASSIFICATION ACCURACY OF INTERPRETABLE

NEURAL NETWORKS ON REAL-WORLD DATASETS.

Methods VGG16
VOC
Part

CUB-
200

ILSVRC
Part

ImageNet-
100

Baseline 90.99% 81.39% 90.71% 84.12%
CSGCNN 90.66% 77.20% 86.65% 80.70%
Decoup 91.43% 80.69% 91.04% 84.64%
CW* 90.72% 79.58% 91.73% 83.86%
icCNN 90.44% 80.36% 90.84% 84.30%
ICNN 91.97% - 86.30% -
Ours w/o
sync

91.10% 82.68% 90.81% 83.96%

Ours 91.53% 82.48% 91.10% 84.40%

Methods ResNet18
VOC
Part

CUB-
200

ILSVRC
Part

ImageNet-
100

Baseline 88.26% 73.90% 88.72% 81.18%
CSGCNN 87.11% 71.82% 88.76% 80.68%
Decoup 88.50% 74.01% 87.17% 81.86%
CW* 90.77% 73.42% 90.48% 81.28%
icCNN 88.63% 73.80% 88.82% 81.44%
ICNN - - - -
Ours w/o
sync

88.26% 74.04% 88.89% 82.14%

Ours 88.53% 74.34% 89.09% 82.04%
* The CW method involves extra concept data.

mean feature maps across all filters for different models.
Since the VGG16, CSGCNN, Decoup, and icCNN lack direct
regularization on the response within filters, their average
activation maps appear scattered. Unfortunately, CW fails
to show an advantage in feature interpretability. In contrast,
both ICNN and our model are of such constraints, and it is
conceivable that the average activation maps of the two meth-
ods are purer than the others. However, the filters of ICNN
collapsed to the same activation of a single or few semantic
parts, which may be sufficient for the classification task but
insufficient for global semantic representation. In contrast, our
proposed method achieves both clear activation and distributed
representation. While the activation consistency constraint
ensures the purity of a single filter to semantic objects, the

 !

 "

#

0.01 0.03 0.05 0.1 0.2 0.3 0.5

Raw image Baseline model

Fig. 8. Average filter activation maps under different hyper-parameter settings.

functional modules formed by neuronal synchronization show
a distributed response to global semantic objects.

C. Quantitative Evaluation Results

1) Mask-based Metric Results: The quantitative metrics
from various perspectives give a comprehensive assessment
of hidden-semantics-based active interpretability, listed in Ta-
ble I. Interp. is the main goal of interpretable models. Under
rigorous task and evaluation settings, the existing methods
have made incremental progress. Compared with state-of-the-
art methods, our method achieves significant improvement on
the metric and hits the top in both architectures. However,
ICNN and ours with only the activation consistency constraint
present a low diversity on semantic parts. The proposed
method with the synchronization mechanism preserves diverse
interpretability. Meanwhile, the improvement of Stability and
Purity metrics means that the proposed interpretable model is
capable of consistently associating filters with corresponding
specific semantic patterns.

2) Mark-based Metric Curves: We employ the metric pair
curve to assess interpretable neural networks on landmark-
annotated datasets. Numerical comparison under the same
interpretability scale is valid. Figure 6 illustrates the metric-
pair curves of different CNNs on different datasets, with
Interp. as the base axis. In both datasets and architectures,
the interpretability of the proposed method achieves superior
stability and purity, as well as comparable diversity. Moreover,
our model has a broader interpretability scale and exhibits
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TABLE III
MODULE CONSISTENCY. THE LESS IS BETTER.

Methods VOC
Part

CUB-
200

ILSVRC
Part

ImageNet-
100

VGG16 0.4617 0.4855 0.4847 0.4858
icCNN 0.4481 0.4827 0.4653 0.4711
Ours w/o
sync

0.1501 0.4925 0.1507 0.4872

Ours 0.3267 0.4306 0.2663 0.3571

TABLE IV
ALIGNMENT BETWEEN MODULES AND SEMANTIC PARTS.

Methods NMI ARI AVI

VGG16 0.1432 0.1152 0.1267
icCNN 0.1599 0.1277 0.1532
Ours w/o sync 0.2502 0.3126 0.2285
Ours 0.3538 0.3905 0.3542

better interpretability than state-of-the-art interpretable mod-
els. Our model with only the activation consistency constraint
has a greater advantage on the CUB200 dataset. This may be
because the CUB200 dataset focuses only on birds, and the
patterns across the entire dataset are not complicated.

3) Classification Accuracy: Table II summarizes the clas-
sification accuracy, demonstrating the trade-off effect of dif-
ferent interpretable constraints on multi-category classification
tasks. While the proposed method performs well on model
interpretability, it also provides comparable or even superior
results compared to other methods. The CSGCNN method as-
signs a filter to a specific category. As the number of categories
increases, the number of filters per category will decrease.
This damages the capacity and representation ability of the
model, leading to a decline in performance, as observed in
the CUB200, ILSVRC Part, and ImageNet-100 datasets. Other
algorithms do not cause great degradation of classification
performance. Even the CW algorithm utilizes extra concept
data, boosting its classification accuracy.

D. Sensitivity Analysis

The synchronization-inspired interpretable neural network
involves two constraints and several hyper-parameters. To
investigate the effect of each component, we conduct a param-
eter sensitivity analysis on the balance coefficients λ1 and λ2,
as well as the neighbor range ϵ. Specifically, on the VOC Part
dataset with VGG16 as the backbone, we vary one parameter
within the range of {0.01, 0.03, 0.05, 0.1, 0.2, 0.3, 0.5} while
keeping the other parameters at their optimal value.

Figure 7 summarizes the quantitative results of the sensi-
tivity experiments, while Figure 8 shows the qualitative effect
of hyper-parameters on global filter activation. The accuracy
remains robust to changes in hyper-parameters, with only a
slight decrease under extreme settings. Increasing the coeffi-
cient λ1 of the activation consistency constraint enables filters
to focus on semantic objects rather than noisy areas, thereby

Fig. 9. Model redundancy investigation by pruning.

enhancing Interp. and Stability. However, excessive consis-
tency constraints can cause filters to completely collapse,
damaging model performance on the metrics. Strengthening
the synchronization constraint, i.e., increasing λ2, promotes
filters with similar functions to mutually excite. This allows the
filters in the modules to focus on specific semantic parts in a
stable and pure manner, while the filters between the modules
exhibit diversity. However, extremely high values can cause
filters to associate with meaningless spaces. The neighboring
range ϵ affects the synchronization range between filters. When
its value is too small, a filter cannot be synchronized with
other filters, reducing the effect of synchronization loss. In
contrast, when its value is too large, most filters are grouped
into a cluster, deepening the collapse of filter functions and
damaging the model performance on various indicators.

E. Functional Module Analysis

The proposed method aims to co-activate similar neurons
to form functional modules by neuronal synchronization. This
raises several interesting questions: 1) Do the gathered neu-
rons consistently belong to the same module? 2) Does the
functional module enhance model interpretability? 3) Is the
information processing redundant in the model with modules?
4) Does the modular structure enhance the model robustness
against the parameter disturbance? In this section, we conduct
functional module analysis on the VOC Part dataset to in-
vestigate these questions. Additionally, since icCNN groups
neurons with pre-defined clusters, we further employ this
method for comparison.

1) Module Consistency: We define the connectivity of
filters by cosine similarity and spectral clustering. Specifically,
the normalized feature map A(fi) as the filter activation of the
image is adopted to represent filter behaviors. The original
high-dimensional feature map is used here, therefore, the
cosine similarity is selected instead of Euclidean distance.
The filter similarity on the image is calculated by the dot
product, i.e., simi,j = A(fi) · A(fj). Based on the similarity
matrix, spectral clustering is conducted, with the number
of clusters set as the pre-defined number of semantic parts
in the dataset. The connectivity of filters on one image is
the upper triangular matrix of the adjacency matrix given
by the clustering. Finally, module consistency is defined as
the average standard deviation of filter connectivity across
different images.

The module consistency of different models is listed in
Table III. The smaller the index value, the better the module
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(a) VGG16 (b) icCNN

(c) Ours w/o sync (d) Ours

Fig. 10. Disturbance sensitivity of models on VOC Part dataset.

consistency. icCNN only slightly outperforms the baseline
model, indicating that the icCNN method cannot guarantee
consistency in the module of gathered filters among different
instances. Meanwhile, when only the activation consistency
constraint is adopted, our model shows the best module con-
sistency. This is because most filters collapsed into a module.
In contrast, the synchronization constraint retains the global
structure, making a trade-off on the module consistency of
the proposed model.

2) Model Interpretability with Modules: To investigate
whether functional modules in the high-level convolution layer
benefit model interpretability, we compare the relationship
between filters and modules with the relationship between
filters and semantic parts. The IoU-based index mentioned
in Section III-D provides a way to assign filters to semantic
parts. Meanwhile, the previous sub-section describes how to
cluster filters into modules. Given these two relationships, we
introduce the metrics including NMI [65] (Normalized Mutual
Information), ARI [66] (Adjusted Rand Index), and AVI [67]
(Adjusted Variation of Information) to measure their align-
ments. Table IV illustrates the alignment between modules
and semantic parts, showing how functional modules help
filter interpretability. In the table, the icCNN method did not
demonstrate significant gains in the relationship between mod-
ules and semantic parts. The indicator values of the proposed
method are greater than those of other models, especially
ours without the synchronization constraint. It means that the
proposed synchronization loss imposes a clear correspondence
of modules to semantic parts, enabling a white-box model
through a small number of functional modules.

3) Model Redundancy with Modules: We encourage the
mutual excitation of neurons activated by approximate patterns
to form modules expressing similar functions. Therefore, the
emergence of functional modules should increase the function
redundancy of neurons in the neural network model. To
explicitly investigate this phenomenon, we introduce the neural

network pruning method based on Taylor expansion [68]. This
experiment explores function redundancy in neural networks
by sequentially removing the redundant filter that has the least
impact on results. Figure 9 shows that our method exhibits
higher redundancy to prevent performance degradation. How-
ever, since neurons have collapsed, the model with only the
activation consistency constraint is of more redundant units.
Surprisingly, icCNN is difficult to resist filter pruning, possibly
because it encouraged differences between different groups to
a greater extent.

4) Model Robustness with Modules: Since neurons in the
same module are redundant, can the redundancy of the module
benefit model robustness? We employ the technology of loss
landscape [69] to investigate the sensitivity of model per-
formance to disturbances. The parameters in the high-level
convolution layer are changed in two orthogonal directions.
Based on sampling, the loss surface of the disturbed model
upon test data is drawn in Fig. 10. As shown, models with
modular constraints have lower loss values and smoother loss
landscapes than the baseline model. Namely, icCNN and the
proposed model with the synchronization loss perform more
stably against parameter disturbance than ours without the
synchronization loss and the baseline model, respectively.

V. CHALLENGES

While active interpretation methods in neural networks
provide real-time and credible advantages, how to develop
an effective constraint is still the primary challenge in this
field. Different from existing methods that require additional
semantic annotations, class information, or prior clustering
information, the introduced synchronization mechanism facili-
tates adaptive interactions between neurons, imposing effective
constraints toward the ordered presentation of information.
Meanwhile, balancing model performance and interpretability
is a crucial challenge when imposing interpretability con-
straints, as these constraints reduce the complexity of model
representation. The synchronization method allows for lo-
cal aggregation of representation while maintaining global
distribution, preserving the model capacity. Eventually, the
lack of a reasonable and comprehensive evaluation system
remains a significant obstacle to the development of ac-
tive interpretability methods. The assessment of active inter-
pretability toward optimized neurons is mainly based on filter
object-part interpretability, whereas post-hoc interpretability
offers a comprehensive hexagonal capability map [70]. To
comprehensively evaluate the interpretability of constrained
neurons, we propose a set of metrics that examine the neuron
interpretability from multiple perspectives.

VI. LIMITATIONS

Although our proposed method has demonstrated promise
in reducing representation complexity and enhancing network
interpretability by simplifying and aggregating neurons in the
spatial domain, it does have certain limitations. Specifically,
our method shares a common limitation with existing feature-
based actively interpretable neural network methods, namely, it
is applicable to high-level convolutional layers. This is due to
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the enrichment of semantic information in neural networks as
layer depth increases, making it difficult to constrain neuron
representation of low-level semantics which is in the wide
distribution in the spatial domain at lower layers. In the
next work, we will focus on addressing this limitation by
implementing a model-based constraint. Moreover, although
our method performs well under the same parameter settings
across multiple datasets, optimal performance still requires
parameter tuning for different neural network architectures.
Automated parameter tuning on small datasets may help
alleviate this issue. Despite these limitations, our proposed
method significantly enhances neural network interpretability
and provides novel insights and ideas. We hope our findings
will inspire further research.

VII. FUTURE RESEARCH DIRECTIONS

In future research, we aim to overcome the existing lim-
itations. Namely, we plan to give an explanation for every
element in actively interpretable neural networks. It enables a
fully transparent design of neural networks. Therefore, how
to extend the scope of active interpretability constraints is
the main research direction in the future. Additionally, as
there is no prior standard for semantics, the semantics of
constrained neurons cannot be directly described. In future
research, promoting the human-friendly interpretation of ac-
tively interpretable models without additional semantic su-
pervision is a valuable research direction. Finally, for pow-
erful pre-training models, incorporating active interpretability
constraints in unsupervised comparative training presents an
interesting research direction.

VIII. CONCLUSION

In this paper, we propose a biological-inspired interpretable
neural network, by introducing the synchronization mechanism
to construct interpretable functional modules. To this end,
we constrain each neuron to capture one semantic pattern
with local activation consistency loss. Afterward, the synchro-
nization loss is proposed so that neurons responding to the
same pattern are aggregated together to form functional mod-
ules, preserving globally distributed representation. A series
of evaluation metrics from different aspects are introduced
for comprehensive interpretability assessment. Qualitative and
quantitative experiments have demonstrated that the proposed
method provides superior interpretability compared with many
state-of-the-art algorithms. We hope this study will enlighten
people to consider interpretability from a new biological
perspective.
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[56] C. Böhm, C. Plant, J. Shao, and Q. Yang, “Clustering by synchroniza-
tion,” in Proceedings of the 16th ACM SIGKDD international conference
on Knowledge discovery and data mining, 2010, pp. 583–592.

[57] D. Liu, S. Wang, J. Ren, K. Wang, S. Yin, and Q. Zhang, “Trap of feature
diversity in the learning of mlps,” arXiv preprint arXiv:2112.00980,
2021.

[58] X. Chen, R. Mottaghi, X. Liu, S. Fidler, R. Urtasun, and A. Yuille,
“Detect what you can: Detecting and representing objects using holistic
models and body parts,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2014, pp. 1971–1978.

[59] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, “The
caltech-ucsd birds-200-2011 dataset,” 2011.

[60] Q. Zhang, R. Cao, Y. N. Wu, and S.-C. Zhu, “Growing interpretable
part graphs on convnets via multi-shot learning,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 31, no. 1, 2017.

[61] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, “icarl:
Incremental classifier and representation learning,” in Proceedings of the
IEEE conference on Computer Vision and Pattern Recognition, 2017, pp.
2001–2010.

[62] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large
scale visual recognition challenge,” International journal of computer
vision, vol. 115, no. 3, pp. 211–252, 2015.

[63] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014.

[64] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[65] A. Strehl and J. Ghosh, “Cluster ensembles—a knowledge reuse frame-
work for combining multiple partitions,” Journal of machine learning
research, vol. 3, no. Dec, pp. 583–617, 2002.

[66] L. Hubert and P. Arabie, “Comparing partitions,” Journal of classifica-
tion, vol. 2, no. 1, pp. 193–218, 1985.

[67] X. V. Nguyen, J. Epps, and J. Bailey, “Information theoretic measures
for clusterings comparison: is a correction for chance necessary?” in
ICML, 2009.

[68] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning
convolutional neural networks for resource efficient inference,” in In-
ternational Conference on Learning Representations, 2016.

[69] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, “Visualizing the
loss landscape of neural nets,” in Proceedings of the 32nd International
Conference on Neural Information Processing Systems, 2018, pp. 6391–
6401.

[70] A. Hedström, L. Weber, D. Krakowczyk, D. Bareeva, F. Motzkus,
W. Samek, S. Lapuschkin, and M. M.-C. Höhne, “Quantus: An explain-
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Christian Böhm received the Ph.D. degree, in
1998 and the habilitation degree, in 2001. He
is currently a professor of computer science at
Ludwig-Maximilians-Universität München, Munich,
Germany. His research interests include database
systems and data mining, particularly index struc-
tures for similarity search and clustering algorithms.
He has received several research awards at top-tier
data mining conferences.

Junming Shao received his Ph.D. degree with the
highest honor (“Summa Cum Laude”) at the Uni-
versity of Munich, Germany, in 2011. He became
the Alexander von Humboldt Fellow in 2012. Cur-
rently, he is a professor of Computer Science at the
University of Electronic Science and Technology of
China. His research interests include data mining
and neuroimaging. He not only published papers
on top-level data mining conferences like KDD,
ICDM, and SDM (three of those papers have won
the Best Paper Awards), but also published data

mining-related interdisciplinary work in leading journals including Brain,
Neurobiology of Aging, and Water Research.


