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A B S T R A C T

Based on brain magnetic resonance imaging (MRI), multiple variations ranging from MRI scanners to center-
specific parameter settings, imaging protocols, and brain region-of-interest (ROI) definitions pose a big
challenge for multi-center Alzheimer’s disease characterization and classification. Existing approaches to reduce
such variations require intricate multi-step, often manual preprocessing pipelines, including skull stripping,
segmentation, registration, cortical reconstruction, and ROI outlining. Such procedures are time-consuming,
and more importantly, tend to be user biased. Contrasting costly and biased preprocessing pipelines, the
question arises whether we can design a deep learning model to automatically reduce these variations from
multiple centers for Alzheimer’s disease classification? In this study, we used T1 and T2-weighted structural
MRI from Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset based on three groups with 375 subjects,
respectively: patients with Alzheimer’s disease (AD) dementia, with mild cognitive impairment (MCI), and
healthy controls (HC); to test our approach, we defined AD classification as classifying an individual’s structural
image to one of the three group labels. We first introduced a convolutional adversarial autoencoder (CAAE) to
reduce the variations existing in multi-center raw MRI scans by automatically registering them into a common
aligned space. Afterward, a convolutional residual soft attention network (CRAT) was further proposed for
AD classification. Canonical classification procedures demonstrated that our model achieved classification
accuracies of 91.8%, 90.05%, and 88.10% for the 2-way classification tasks using the RAW aligned MRI scans,
including AD vs. HC, AD vs. MCI, and MCI vs. HC, respectively. Thus, our automated approach achieves
comparable or even better classification performance by comparing it with many baselines with dedicated
conventional preprocessing pipelines. Furthermore, the uncovered brain hotpots, i.e., hippocampus, amygdala,
and temporal pole, are consistent with previous studies.
1. Introduction

Alzheimer’s disease (AD) is characterized by increasing cognitive
and behavioral impairments, eventually resulting in dementia syn-
drome; it is a neurodegenerative disease, which is the most common
cause of age-related dementia (Jack et al., 2018; Association, 2019). For
example, about 5.7 million people lived with AD in the United States in
2018 (Association et al., 2018), with predicted numbers for 2040 more
than doubled. Early AD intervention needs foregoing diagnosis, and
several biomarkers have been proposed to identify the disease. Amongst
these markers, magnetic resonance imaging (MRI) provides a promising
cost-efficient tool to improve AD diagnosis (Wen et al., 2020). However,
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multiple variations in the MRI-approach on AD classification, rang-
ing from MRI scanners to center-specific parameter settings, imaging
protocols, and often manual brain region-of-interest (ROI) definition,
pose a big challenge for reliable diagnostic procedures (Mayerhoefer
et al., 2009; Dong et al., 2017; Sedeno et al., 2017). Modeling an
automatic AD prediction pipeline to handle such MRI-approach-based
variability might improve AD diagnosis. Thereby, data-driven-based
automated AD characterization and classification have gained more
attention in recent years (Li et al., 2020; Hett et al., 2021). The current
study contributes to this topic with a special focus on multi-center AD
classification problems based on deep learning approaches.
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Recent research has demonstrated the effectiveness, timeliness, and
reliability of deep learning techniques in diagnosing AD (Jo et al.,
2019b; Myszczynska et al., 2020; Iizuka et al., 2019; Zhang et al.,
2021b). Deep learning techniques, such as convolutional neural net-
works (CNNs), can automatically extract in-depth representative fea-
tures from the raw images without needing prior manual feature selec-
tion processes (Goceri, 2021; Vieira et al., 2017; Wang et al., 2021a). In
this way, deep learning techniques reduce the over-reliance on domain
expertise in the user-biased handcrafted design and extraction of vital
discriminative features in AD diagnosis.

Among the most current deep learning techniques in Alzheimer’s
disease prediction, attention mechanism has proven to be a potent
tool, and an important component in predicting the disease using MRI
scans (Zhang et al., 2021a, 2020; Liu et al., 2022). The attention mech-
anism technique has shown high accuracy for the prediction of AD, as
reported in these works (Liu et al., 2022; Wang et al., 2021b; Jin et al.,
2019). Attention mechanism has proved efficient in capturing global
dependencies because it learns the dependency relationship between
each AD feature and assigns corresponding weights to map out the most
discriminative features.

Acquisition of multi-center MRI scans in AD diagnosis is progres-
sively considered a reliable, worthwhile, and promising approach to
facilitate a robust diagnosis (Hao et al., 2020; Gradin et al., 2010;
Basaia et al., 2019). Multi-center studies allow better generalization of
diagnosis performance, not only limited to different subjects scanned
on the same scanner but also different subjects scanned on different
scanners (Mwangi et al., 2012). However, the massive challenge of
multi-center AD classification is variations in multi-center MRI raw
scans (Dong et al., 2017; Sedeno et al., 2017; Teipel et al., 2010;
Potvin et al., 2019) and the user-biased manual intervention of experts
to focus on selected characteristics. These variations are based on
MRI scanners’ differences, center-specific parameter settings, imaging
protocols, different individual brain morphology, MRI scans acquisi-
tion imperfections, and patient positioning across various clinics and
hospitals (Schnack et al., 2010; Gilmore et al., 2019). Because of these
variations, typical multi-step conventional preprocessing techniques,
including skull stripping, segmentation, registration, cortical recon-
struction, ROI outlining, and statistical correction, are applied to the
acquired MRI scans before AD classification (Zhu et al., 2021; Qiu
et al., 2019). Critically, such preprocessing tends to be user-biased and
thus become difficult for AD prediction models to generalize well on
unseen patient data with variations. Thereby, a fully automated model
for AD prediction without any user intervention to reduce the inter-and
intra-variability in multi-center MRI scans is highly recommended.

In this study, our principal interest is harnessing the capabilities of
deep learning techniques in handling multi-center MRI variations and
making AD classification directly from raw MRI data. Concerning data,
we used T1-weighted and T2-weighted structural MRI from Alzheimer’s
Disease Neuroimaging Initiative (ADNI) dataset based on three groups,
respectively: patients with Alzheimer’s disease (AD) dementia, with
mild cognitive impairment (MCI), and healthy controls (HC). To test
our approach, we defined AD classification as classifying an individual’s
structural image to one of three group labels. Concerning our analyt-
ical approach, an unsupervised convolutional adversarial autoencoder
(CAAE) is proposed for the automatic feature extraction and alignment
of raw multi-center MRI scans into a common space to reduce the
variations existing in multi-center raw MRI scans. We further per-
formed AD classification using a CNN with a soft residual attention
mechanism (i.e., convolutional residual soft attention network, CRAT).
Furthermore, we also validated our CAAE alignment model by using
the output of its latent representations/embedding (reduced dimen-
sion) on selected statistical machine learning models as an incentive
method. Building upon our model, it offers an intuitive way to handle
multi-center MRI variations, which does not involve any user-biased
preprocessing procedure in AD classification. Beyond the soft residual
attention mechanism, we explore the brain regions relevant for AD
classification and compare them with well-known regions most affected
2

by AD. The contributions of this paper can be summarized as follows: s
Table 1
Demographic and clinical characteristics.

AD MCI HC p

Sex (M/F) 205/170 219/156 190/185 0.34
Age (y) 75.2 ± 7.2 75.0 ± 7.3 74.4 ± 6.0 0.31
CDR 1.2 ± 0.6 0.5 ± 0.2 0 ± 0 <0.01
MMSE 24.09 ± 2.15 26.09 ± 1.15 28.40 ± 1.18 <0.01

Values are presented as mean ± SD. AD = Alzheimer’s disease patient; MCI = Mild
ognitive impairment; HC = Cognitively normal patient; MMSE = Mini-Mental State
xamination; CDR = Clinical Dementia Rating; p = 𝑝-value calculated from Chi-squared
est.

1. We propose an adversarial autoencoder method to reduce multi-
center MRI variations in AD classification.

2. The proposed framework is robust and provides a time-efficient
fully automatic end-to-end approach for AD classification.

3. An attention-based mechanism is leveraged to uncover the brain
hotspots discriminative to AD, which is consistent with the
literature.

4. The performance of the proposed approach is empirically vali-
dated, and reported results are encouraging for raw-MRI scans
without typical MRI preprocessing pipeline.

. Multi-center neuroimaging data

.1. Subjects

The dataset used in this research was obtained from the ADNI
atabase (http://adni.loni.usc.edu/methods/documents). The ADNI is
public project that makes reliable multi-center clinical and imaging

ata available to Alzheimer’s disease researchers. An extensive review
f ADNI datasets can be found in Weiner et al. (2015). In the cur-
ent study, we included 1125 participants (Table 1) from the ADNI
atabase. The dataset includes all subjects from ADNI-1, ADNI-2, and
DNI-GO, who had baseline T1-weighted and T2-weighted scans. The
atasets were acquired from different sites with different MRI scanners
aving different acquisition protocols. We included three groups of
articipants, each group with 375 subjects: cognitively normal per-
ons (Mini-Mental State Examination (MMSE) > 24, Clinical Dementia
ating (CDR) = 0, non-depressed), patients with Alzheimer’s disease
MMSE < 26, CDR > 0.5), and patients with mild cognitive impairment
MMSE > 24, CDR = 0.5, with objective memory loss).

.2. Data acquisition

Original structural MRI (sMRI) scans, both T1 and T2 weighted,
ere obtained from different 1.5T or 3T scanners (General Electric
edical System, Philips Medical Systems, and Siemens MRI scanners) in

ll ADNI centers. The MRI data were acquired from different scanners
o develop a reliable model to classify Alzheimer’s disease irrespective
f the MRI scans’ variability. Specifically, structural T1-weighted and
2-weighted MRI scans were acquired using 1.5T and 3T scanners.
e obtained the following sequences: (i) 1.5T T1-weighted; acquisition

arameters were inversion time (𝑇 𝐼) = 1000 ms, slice thickness = 2 mm,
epetition time (𝑇𝑅) = 2400 ms, field-of-view (FOV) = 240 × 240 mm2,
inimum full echo time (TE), and flip angle = ∠8 or ∠9; (ii) 1.5T
2-weighted; the acquisition parameters were FOV= 260 × 260 mm2,
lice thickness = 3 mm or 4 mm, flip angle = ∠8 or ∠9, minimum
ull TE, and 𝑇 𝐼 = 900 ms, 𝑇𝑅 = 2300 ms. (iii) 3T T2-weighted;
he acquisition parameters were echo time (𝑇𝐸) = 85 ms, 𝐹𝑂𝑉 =
30 × 208 mm2, flip angle = ∠90, repetition time (𝑇𝑅) = 3000 ms,
nd slice thickness = 3 mm. All scans were acquired with varying
cquisition matrix in the x, y, and z dimensions. In Table 2, we present
ypical sequence differences between MRIs captured with 1.5T and 3T
canners. The scans comprised full brain coverage axial, coronal, and

agittal acquisition planes. Since several patients have MRI scans taken

http://adni.loni.usc.edu/methods/documents
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Table 2
Typical differences between MRIs captured with 1.5T and 3T scanners.

1.5T 3T

1 Poor image quality. Better image quality.
2 Robust to artifacts. Susceptible to artifacts.
3 Less specific absorption rate. Increased specific absorption rate.
4 Less spatial resolution. Increased spatial resolution.
5 Less signal-to-noise ratio (SNR). Increased signal-to-noise ratio.
6 Less acoustic noise. Increased acoustic noise.
7 The capture of anatomical structure is not very precise. Produces precise anatomical capture.
Fig. 1. A Flow diagram illustrating the combined architecture for multi-center MRI variability handling and attention-based convolutional network for Alzheimer’s disease
classification. MRI scans from multiple centers are aligned to a common space, and discriminative features are extracted using a convolutional adversarial autoencoder. The
aligned MRI scans are then passed through a convolutional soft attention network to further handle variability by attending significant AD prediction regions. Finally, three binary
classification tasks (Alzheimer’s disease vs. cognitively normal, Alzheimer’s disease vs. mild cognitive impairment, mild cognitively normal vs. cognitively normal) are performed.
at different visits or centers in the ADNI database over the years, we
ensured that the same patient’s images could be only part of either
the training or test data set. We focus on the original raw MRI scans
without any typical MRI preprocessing like skull stripping, head motion
correction, registration, segmentation, and the like.

3. Methodology

We developed a CAAE architecture to automatically reduce the vari-
ations from multiple centers and a convolutional attention network for
Alzheimer’s disease classification. Specifically, the proposed method-
ology consists of two parts: (1) Multicenter MRI variations handling
via convolutional adversarial autoencoder, and (2) Classification with
convolutional residual attention network. For an overview, see Fig. 1.

3.1. Data augmentation

We applied data augmentation techniques (Wang et al., 2021a) to
the raw multi-center MRI scans belonging to the training set. This was
to help increase the dataset and also achieve model robustness. In
this work, size augmentation and location augmentation were applied.
In size augmentation, after applying the cropping augmentation tech-
nique, the dimension of the MRI scans were resized to fit the desired
dimension for the model. For location augmentation, we applied gaus-
sian blur with sigma value ranging between 0 and 1.3, both vertical and
horizontal flip with a probability of 0.5, and image rotation between
the angle of −45 and 45. We produced an increasing amount of dataset
for each class with the equation:

𝑇 = 𝑛 ×𝐾 (1)
3

𝑐 𝑐
where 𝑇𝑐 is the new amount of dataset for each class 𝑐, 𝑛𝑐 is the initial
number of each class before data augmentation, K is the increment
factor and 𝑐𝜖{𝐴𝐷,𝑀𝐶𝐼,𝑁𝐶}. In this work, the increment factor 𝐾 is
2. It means that each input data would be augmented once and increase
the initial training dataset with a factor of 2.

3.2. Multi-center MRI variations handling via convolutional adversarial
autoencoder

To circumvent the multi-center MRI variance-induced problem, we
developed a CAAE architecture to automatically project all raw three-
dimensional (3D) MRI scans into a common aligned space. The ad-
versarial autoencoder (Makhzani et al., 2015) was used to extract
discriminative features that align each raw MRI scan from different
domains or multiple centers into a common (or standard) space. We
utilized the reconstruction and regularization phase of adversarial au-
toencoders to perform the extraction of unique features that capture the
variability in raw MRI scans from multiple centers. We formulated the
convolutional autoencoder into the following parts: autoencoder and
adversarial network. See Fig. 2 for the CAAE architecture.

3.2.1. Autoencoder
In this paper, we term the handling of the variability among MRI

scans from multiple centers as ’MRI alignment’. The MRI alignment is
handled with an adversarial autoencoder technique. The multi-center
MRI scans are passed as inputs to the architecture for a common
transformed output (aligned MRI scans) for further classification tasks.
In adversarial autoencoders, we simultaneously trained an autoen-
coder (Masci et al., 2011; Pulgar et al., 2020) to minimize the recon-
struction loss of an input MRI scan and a discriminative (adversarial)
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𝑥

Fig. 2. The CAAE architecture for extracting generic features and aligning MRI scans into a common space for AD classification.
network to distinguish between true samples and generated samples.
The autoencoder is made up of an encoder and a decoder. The encoder
part aims at encoding raw MRI data into reduced latent features of
deep representations. The encoder learns to convert the raw MRI scans
distribution to a prior distribution. To this end, the encoded feature
comprises hidden code information of the raw MRI data. The latent
code generated by the encoder is represented as

𝑧 = 𝜎(𝑊 ∗ 𝑥 + 𝑏) (2)

where 𝑧 is the encoder’s output, 𝑥 is the MRI input, ∗ is the convo-
lutional operation, and 𝑊 , 𝑏, and 𝜎 are weights, bias, and Rectified
Linear Unit (ReLU) activation function respectively of the convolutional
operation. The encoder is also the generator of this network.

The decoder network projects the latent code of the encoder net-
work into a new MRI space. In brief, the decoder maps the intended
prior distribution to the raw MRI scans distribution. Furthermore, the
decoder network guides all the raw MRI scans into a new common
space. The decoder objective function is represented as

̂ = 𝜎(𝑊 ∗ 𝑧 + 𝑏) (3)

where �̂� is the reconstructed MRI, and 𝑧 is the latent code from
the encoder. The reconstruction loss function of the autoencoder is
calculated as

𝐿(𝑥, �̂�) = 1
𝑛

𝑛
∑

𝑖=1
‖𝑥𝑖 − �̂�𝑖‖

2 (4)

where �̂� represents reconstructed MRI scans, and 𝑥 is the raw MRI
scans as input to the encoder. The autoencoder network of the con-
volutional autoencoder is a variant of VGG16 convolutional network
architecture (Simonyan and Zisserman, 2014) with no 5th convolu-
tional block. The network’s basic building blocks are 3D convolutional
layers, ReLU (He et al., 2015), batch normalization (Ioffe and Szegedy,
2015), and 3D Max-pooling. The encoder has ten 3D convolutional
layers with a batch normalization succeeding each convolutional layer.
The network’s decoder is designed with ten 3D transpose convolution
with each followed by a batch normalization. See Table A.4 and Table
A.5 at Appendix.C, for more information on the architectural design.

3.2.2. Adversarial network
The adversarial network consists of a discriminator model that

guides the generated output (latent code) of the encoder network
to match a random Gaussian prior distribution to ensure that the
autoencoder network generates an output (transformed MRI scans)
similar to the intended distribution. Let 𝑥 be the raw MRI scans, 𝑧 the
latent code of the encoder, 𝑝(𝑧) be an arbitrary Gaussian prior to being
4

imposed on the latent code as the real input to the discriminator, 𝑞(𝑧)
be an aggregated posterior generated by the encoder distribution 𝑞(𝑧|𝑥),
and 𝑝(𝑥|𝑧) the decoding distribution. Here 𝑞(𝑧|𝑥) follows a Gaussian
distribution whose mean and variance is predicted by the encoder
network, 𝑧 ∼  (𝜇(𝑥), 𝜎(𝑥)).

The adversarial autoencoder’s training phase is regularized by
matching the aggregated posterior to the arbitrary Gaussian prior. The
adversarial network’s generator is the encoder of the autoencoder. The
encoder ensures the aggregated posterior distribution will trick the
discriminative adversarial network into believing that the latent code
comes from the real Gaussian prior distribution. This encoder operation
allows robust convergence of the network and ensures that the network
generates the best-desired MRI outputs. The cost function used to train
the discriminator, or the adversarial loss is

𝐿𝐴𝑑𝑣𝑒𝑟 = 𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥)(log𝐷(𝑥)) + 𝐸𝑧∼𝑝𝑧(𝑧)(log(1 −𝐷(𝐺(𝑧)))) (5)

where 𝐷(𝑥) denotes the probability that a point is from the prior
distribution, and 𝐺(𝑧) maps samples 𝑧 from the prior 𝑝(𝑧) to the new
MRI space. The discriminator network is composed of thirteen 3D con-
volutional layers. We train the autoencoder and the adversarial network
simultaneously with the Adam Optimizer (Da, 2014). Although, various
optimizations like Sobolev gradient based methods (Goceri, 2019c,b)
have been applied in some recent works, we applied Adam to provide
efficiency in terms of computational cost.

3.3. Classification with convolutional residual attention network

Inspired by the recent application of attention mechanisms (Bah-
danau et al., 2014; Yang et al., 2016; Yao et al., 2020) in deep
neural networks and AD diagnosis, we propose CRAT for Alzheimer’s
disease classification. This convolutional network adopts a mixed at-
tention mechanism with residual networks (He et al., 2016), which
significantly affect the performance of a classifier (Goceri, 2019a), in
classifying Alzheimer’s disease using the new transformed raw MRI
scans. Incorporating the attention mechanism (Fig. 3(a)) allows the
model to focus specifically on only important AD features to discrim-
inate and attend to the prediction task’s relevant information. Soft
attention (Bahdanau et al., 2014), a type of attention, calculates a
contextual weight over all the model’s input features. The calculated
weights represent the relative importance of each feature for the given
classification tasks. An overall representation of the input is then
computed with the weights as a weighted combination of all the input
features. During prediction, attention weights with greater values are
given higher priorities in determining the corresponding significant
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Fig. 3. Residual attention network block: (a) The attention-based mechanism in our network. (b) Residual block in the network. (c) The simplified single attention module in the
network. The 𝑘 and 𝑠 notation represents the kernel size and Stride Size of layer respectively. The Residual block is made of two 3D convolutional layers, two batch normalization
to handle overfitting in the network, and a rectifier activation function (ReLU) as the non-linear function.
input feature. The proposed model, CRAT, comprises multiple atten-
tion modules (Fig. 3(c)) that generate attention-aware discriminative
features for AD diagnosis’ binary classification tasks.

The 3D supervised convolutional residual attention network is mod-
eled by heaping multiple attention modules. It is worth noting that the
attention architecture is composed of several residual blocks (Fig. 3(b)),
which captures inter-layer information. Each attention module consists
of two branches: mask branch, 𝑀(𝑥), and trunk branch, 𝑇 (𝑥). The
mask branch’s function is to down-sample the MRI-input volume using
the operations of average pooling or max pooling and up-sample the
output of the down-sampled. The output of the mask operation is passed
through a sigmoid activation. This operation indicates the importance
of each MRI voxel. The trunk branch handles feature processing and ex-
traction. Mathematically, the operation of the convolutional attention
mechanism is given as

𝐹𝑖,𝑐 = 𝑀𝑖,𝑐 (𝑥) × 𝑇𝑖,𝑐 (𝑥) (6)

where 𝐹𝑖,𝑐 (𝑥) is the output of the attention mechanism, 𝑇𝑖,𝑐 (𝑥) the output
of the trunk branch, 𝑀𝑖,𝑐 (𝑥) the output of the mask branch, and i
ranges overall spatial positions (𝑥, 𝑦, 𝑧) and 𝑐𝜖{1,… , 𝐶} is the channel’s
index. The soft mask branch has the potential of breaking the good
property of the trunk branch. A typical example is the identity mapping
of the residual block. To overcome this, we modify the attention module
operation in Eqs. (6) to (7) as proposed in (Wang et al., 2017).

𝐹𝑖,𝑐 = (1 +𝑀𝑖,𝑐 (𝑥)) × 𝑇𝑖,𝑐 (𝑥) (7)

𝑀(𝑥) has a range of 0 to 1, and 𝐹 (𝑥) will approximate origi-
nal features 𝑇 (𝑥). During training, the parameters present in the two
5

branches of the attention module is updated at the back-propagation
step. The proposed convolutional residual attention architecture for
AD classification is constructed with twenty-one residual blocks. Out
of the twenty-one residual blocks, eighteen were used in building the
attention modules; each single attention module having nine residual
blocks. From a broader perspective, the network comprises two atten-
tion networks and three residual blocks. Three parameters: 𝑓 , 𝑚, and
𝑙 were used for the design of the attention module. The parameter 𝑓
represents the number of residual preprocessing units before branching
into the mask branch and trunk branch, 𝑚 represents the number of
residual units in the trunk branch, and 𝑙 represents the number of
residual units between adjacent pooling layer in the mask branch. The
soft mask residual unit and its corresponding trunk branches have
the same number of channels. The attention module is designed to
reduce noise in the MRI scans, which is not preprocessed, while keeping
discriminative information by applying the dot product between input
features and the soft mask. Further information on the convolutional
residual soft attention network is shown in Fig. 4 and Table A.6 at
Appendix.C.

3.4. Exploration of critical brain regions for classification with Class Acti-
vation Mapping (CAM)

We utilized the architectural properties of our 3D CRAT in the AD
classification tasks to visualize the activations of the last convolutional
layer to indicate the brain regions relevant for AD classification. In
visualizing the activations for the network’s decision, we explored
class activation mapping (CAM) (Zhou et al., 2016; Budding et al.,
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Fig. 4. The convolutional attention network for the AD classification tasks. The aligned raw MRI scans from the convolutional adversarial network is passed to the network.
2020), a technique that incorporates a global average pooling (GAP)
layer succeeding the last convolutional layer in any image classification
task. We visualize the activations to interpret our proposed model’s
robustness and performance without treating it as a black-box. This
technique provides remarkable localization performance on discrimi-
native features in the images by generating heat maps to buttress the
network’s performance. Specifically, we applied the CAM to highlight
the parts of the brain that are discriminative for AD classification
and medically validate our proposed method’s robustness. The CAM
technique is extended to a 3D architecture to produce the activations
in the AD prediction task. The class activation map harnesses the
activations produced by the last convolutional layers in visualizing the
discriminative features. The method projects the class weights of the
output layer onto the activation maps in the last convolutional layer.
Furthermore, a weighted sum of the features in the last convolutional
layer generates the activations. In implementing the 3D CAM for this
work, we modified the last block of the CRAT architecture by replacing
the max-pooling layer with the global average layer to have the desired
architecture in generating a class activation map. Mathematically, for a
given MRI image, let 𝑓𝑛(𝑥, 𝑦, 𝑧) denotes the activation of the unit 𝑛 at the
last convolutional layer at a spatial location (𝑥, 𝑦, 𝑧). At the unit 𝑛, the
global average pooling 𝐹𝑛 is ∑

(𝑥,𝑦,𝑧) 𝑓𝑛(𝑥, 𝑦, 𝑧). For a given AD class 𝑐,
we calculate the softmax 𝑆𝑐 as ∑

𝑛 𝑤
𝑐
𝑛𝐹𝑛 where 𝑤𝑐

𝑛 is the corresponding
weight for AD class 𝑐, at unit 𝑛. Specifically, 𝑤𝑐

𝑛 shows the importance
of 𝐹𝑛, given an AD class. Eventually, we calculate the output of the
softmax for a specified AD class 𝑐, 𝑂𝑐 as 𝑒𝑥𝑝(𝑆𝑐 )

∑

𝑐 𝑒𝑥𝑝(𝑆𝑐 )
. Substituting 𝐹𝑛 into

AD class score 𝑆𝑐 , we derive

𝑆𝑐 =
∑

𝑛
𝑤𝑐

𝑛

∑

𝑥,𝑦,𝑧
𝑓𝑛(𝑥, 𝑦, 𝑧) =

∑

𝑥,𝑦,𝑧

∑

𝑛
𝑤𝑐

𝑛𝑓𝑛(𝑥, 𝑦, 𝑧) (8)

We finally define the class activation map 𝐴𝑐 for a given AD class
as

𝐴𝑐 (𝑥, 𝑦, 𝑧) =
∑

𝑛
𝑤𝑐

𝑛𝑓𝑛(𝑥, 𝑦, 𝑧) (9)

Intuitively, ∑𝑥,𝑦,𝑧 𝐴𝑐 (𝑥, 𝑦, 𝑧) and 𝐴𝑐 (𝑥, 𝑦, 𝑧) highlight the significant
activations at the spatial location (𝑥, 𝑦, 𝑧) of the MRI image to interpret
the importance of regions in predicting AD. After incorporating the 3D
CAM in our AD prediction model, we overlayed the 3D CAM on the
MNI152 brain template (Evans et al., 2012; Brett et al., 2001).

3.5. MRI alignment with Hausdorff distance

We also measured the average accuracy of the alignment between
the outputs of 3D CAAE and raw MRI scans with different acquisition
protocols by extracting the edges of the raw scans and the common
6

aligned space, respectively, using the Canny edge detector (Ding and
Goshtasby, 2001) for the assessment of the MRI alignment (Tang et al.,
2000; Fedorov et al., 2008; Agaian and Almuntashri, 2009; Othman
et al., 2009; Archip et al., 2007). The alignment assessment invariably
measures the degree of variations between MRI scans. The Hausdorff
distance (HD) metric (Huttenlocher et al., 1993; Morain-Nicolier et al.,
2007; Fedorov et al., 2008) is then applied to the recovered edges to
evaluate the accuracy of MRI alignment as an estimate for registration
accuracy. The Hausdorff distance defines the maximum distance of a
set to the nearest points in the other set. The Hausdorff distance is
considered as an image similarity metric. We calculated the average
HD between the two-point sets or images across all MRI scans in this
work. Mathematically, we define Hausdorff distance from set 𝐴 to set
𝐵, 𝐻(𝐴,𝐵) as a directed HD between the two sets of points, ℎ(𝐴,𝐵)
representing the maximum distance from any of the points in set 𝐴 to
set 𝐵.

𝐻(𝐴,𝐵) = max(ℎ(𝐴,𝐵), ℎ(𝐵,𝐴)) (10)

where

ℎ(𝐴,𝐵) = max
𝑎𝜖𝐴

{min
𝑏𝜖𝐵

{𝑑(𝑎, 𝑏)}} (11)

where 𝑎 and 𝑏 are the points for 𝐴 and 𝐵, respectively, and 𝑑(𝐴,𝐵)
is the Euclidean distance between the two points. In this work, 𝐴 and
𝐵 represent two different MRI images used to calculate the alignment
accuracy. We then calculated the HD between the two sets of points
representing the edges, which represent the accuracy of the alignment.
The ideal case for no variation or perfect alignment is when the HD
value is zero.

It is worth noting that the same algorithm for the 2D canny edge
detection was extended for the 3D scenario. Thus, the edge detection
is performed in 2D for each MRI slice and the final results for each
slice put together to form a 3D volume. The edges are superimposed
on the original 3D MRI data volume. Additional information could be
referenced from the work (Fedorov et al., 2008) in performing the
detection of edges in 3D MRI images.

4. Experiments

4.1. Experimental settings

The performance of our automatic multi-center variability handling
approach for predicting Alzheimer’s disease was evaluated by a 5-fold
stratified cross-validation. We partitioned 1125 MRI raw input scans
into a training dataset (N = 338) and a test dataset (N = 37) for
each of the MRI data labels (AD, MCI, HC). We trained and evaluated
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our method on three binary classifiers: AD vs. HC, AD vs. MCI, and
MCI vs. HC. Specifically, the dataset was randomly partitioned into
a training and a hold-out test set, where 10% or 111 MRI scans of
all subjects were assigned to the test set. In brief, the experimental
setting comprises validation and testing. In the validation stage, we
performed the 5-fold stratified cross-validation to help tune the hyper-
parameter whiles training the CRAT model and evaluated our model
on the test dataset. We followed the data augmentation procedure for
the training set. The model was then trained and validated using the
training dataset and finally tested using the test dataset. To prevent
data leakage, we maintain the same data splitting strategy both for
the CAAE and the CRAT at the very beginning of the experiments.
For a complete cross-validation experiment, the model was reset, and
the best checkpoints were saved for testing. Sensitivity and specificity
were also calculated on the test dataset. Both the 3D CAAE and 3D
CRAT models are trained for 150 epochs to minimize the softmax cross-
entropy loss using the Adam Optimizer. We also performed an ablation
study to ascertain the effect on the proposed model without the CAAE
component (See Appendix.D). Furthermore, we performed additional
experiments to verify the effectiveness of the proposed method by
testing the trained model on two external datasets. The training was
done with a batch size of five because of the high dimensionality of the
MRI scans (260 × 260 × 260). Learning rates of 0.0001 and 0.00001
were used for the CAAE and CRAT training, respectively. We applied a
dropout of 0.8 as the probability of retaining the output of each node in
the hidden layers of the network to prevent over-fitting during training.
In this current research, the soft attention hyper-parameters used for
this experiment are {𝑓 = 1, 𝑚 = 2, 𝑙 = 1}.

We developed the deep learning framework using Tensorflow 1.15
python version. The experiments were conducted on a machine running
Linux with three Xeon E5-2678 V3 12 core CPU, processor speed of
2.50 GHz, 125 GB main memory and Nvidia Geforce RTX 2080Ti GPU
of 11 GB memory. In ensuring computational memory efficiency, we
did not load all the MRI data into memory, but only loaded the MRI
data batch into memory during the mini-batch training.

4.2. Comparison methods

To evaluate the discriminative ability of our proposed approach,
we thoroughly compared it with five baseline classification models.
Specifically, sparse autoencoders and 3D Convolutional Neural Net-
works (Payan and Montana, 2015), 3D Convolution Neural Network
(Luo et al., 2017), Random Forest (RF) (Maggipinto et al., 2017),
Support Vector Machine (SVM) (Ortiz et al., 2015), Naïve Bayes (NB)
(Gupta et al., 2019), Transfer Component Analysis (TCA) (Pan et al.,
2010), Subspace Alignment (SA) (Fernando et al., 2013), and Correla-
tion Alignment (CORAL) (Kumar et al., 2017) were selected. TCA, SA,
and CORAL are typical hand-crafted feature-based domain adaptation
methods, which learn based on the MRI image features with different
domain protocols. We used both the raw MRI scans and the MRI scans’
preprocessed form for all baseline methods. The preprocessing pipeline
(including skull stripping, registration, normalization, segmentation,
etc.) applied on the MRI scans for these baseline methods are provided
in the Appendix.A. We further evaluated the average variation between
the MRI scans by computing the alignment between the aligned outputs
of the CAAE and raw MRI scans with different scanner acquisition
protocols using the Canny edge detector and Hausdorff distance.

As incentive methods, we also reported the classification perfor-
mance of selected statistical machine learning classifiers (SVM, RF,
and NB) on the discriminative latent representation/embeddings of the
CAAE instead of the full 3D aligned MRI scans, and the classifica-
tion performance on the manually preprocessed MRI scans with our
proposed method. Although, in this current research, our aim is to
automatically aligned the raw multi-center MRI scans in its 3D space
without any intermediate representations, but 3D MRI data has the
problem of curse of dimensionality, which hold a lot of indiscriminative
7

Fig. 5. Multi-center MRI alignment mapped onto a common space with the CAAE.
MRI scans with different acquisition protocols (P1, P2, P3), specifically the repetition
time parameter, slice thickness, and the dimension of the scans from different centers,
are the raw MRIs at the top. The common aligned MRI scans with the dimension of
260 × 260 × 260 are generated for each varying raw MRI scan from different centers.
The common aligned MRI scans by CAAE in the middle also show discriminative fea-
tures extracted by the convolutional adversarial autoencoder. Lastly, the Preprocessed
MRI scans show the MNI152 registered scans with different acquisition protocols.

features which misleads most classification models. For an ideal case,
the performance of the incentive methods should surpass or equal
the performance of the CRAT on the full CAAE aligned 3D MRI scan
outputs.

To investigate how different brain imaging data regions contributed
to the classification, class relevance heatmaps with respect to the AD
cohorts were obtained. We evaluated the interpretability of our model
visually by using the 3D CAM. After incorporating the 3D CAM in our
AD prediction model, we overlayed the 3D CAM on the MNI152 brain
template.

4.3. MRI alignment evaluation

The transformed aligned raw MRI scans shown in Fig. 5 illus-
trate our proposed 3D CAAE deep learning model’s generalizability
in aligning the multi-center MRI scans into a common template. The
selected slices of the transformed MRI subgroups showed the common
learned generic features amidst the multi-center variability, making it
challenging to automatically predict the disease. Our proposed CAAE
architecture could capture features related to AD biomarkers and dis-
card almost all other features not related to AD diagnosis. Fig. 5
shows that no typical preprocessing was applied to the multi-center
MRI scans before the diagnostics process. The CAAE showed a novel
capability of generating features that put the different MRI scans into
a common space amidst the multi-center variability. The subsequent
task-specific AD prediction model, CRAT, further enhances the three
disease subgroups’ discriminability.

In evaluating the shared space of the output produced by our CRAT
model, we denote the MRI scans captured with different acquisition
protocols as P1 (TR = 2400 ms, MRI dimension = 208 × 240 × 256,
slice thickness = 2 mm), P2 (TR = 3000 ms, MRI dimension =
166 × 256 × 256, slice thickness = 3 mm), and P3 (TR = 2300 ms,
MRI dimension = 176 × 240 × 256, slice thickness = 4 mm) for the
different AD classes (see Table A.1 Appendix.A). Table 3 represents
the calculated average Hausdorff distance between MRI scans with
different acquisition protocols for (1) raw multi-center scans, (2) CAAE
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Table 3
Alignment and variation assessment of the CAAE aligned common space with different
MRI acquisition protocol (P) for different AD class.

HD measurement (mm)

P1 vs. P2 P1 vs. P3 P2 vs. P3

AD
Raw MRI 16.55 16.97 17.26
CAAE aligned common space 4.10 4.32 4.97
MNI152 registered 3.05 3.16 3.60

MCI
Raw MRI 16.24 17.66 17.74
CAAE aligned common space 5.19 6.12 6.56
MNI152 registered 4.12 6.00 5.74

HC
Raw MRI 16.12 17.14 16.64
CAAE aligned common space 4.20 4.09 4.10
MNI152 registered 3.00 3.16 3.61

AD = Alzheimer’s disease patient; MCI = Mild cognitive impairment; HC = Cognitively
normal patient; HD = Hausdorff distance; P1 (TR = 2400 ms, MRI dimension =
208 × 240 × 256, slice thickness = 2 mm), P2 (TR = 3000 ms, MRI dimension =
166 × 256 × 256, slice thickness = 3 mm), and P3 (TR = 2300 ms, MRI dimension =
176 × 240 × 256, slice thickness = 4 mm).

aligned common space, and (3) original scans registered to MNI152
template for the different AD class.

The average computed HD values between the various acquisition
protocols show that our proposed model’s alignments achieved an edge
performance over the raw MRI scans. It recorded lower HD values for
the three-protocol comparison (4.10 mm, 5.19 mm and 4.09 mm for
AD, MCI, and HC, respectively), making it a better choice than the raw
MRI scans (16.55 mm, 16.24 mm and 16.12 mm for AD, MCI, and
HC respectively). This affirms its role in reducing the variability that
exists between the MRI scans from multiple centers. Though our model
had a better alignment score over the raw MRI scans, the preprocessed
MRI scanned recorded the best alignment score with small margins,
as showed in Table 3. Also, we show evidence of the varying fea-
ture distribution among the MRI acquisition protocols with the kernel
density estimation (KDE) (Kim and Scott, 2012) plot. Specifically, we
used the KDE method to visualize the distribution observations of the
raw MRI scans before and after the CAAE for the various acquisition
protocols. Regarding Fig. 6, it could be seen that the relative difference
between the density feature distribution for each protocol in the CAAE
space is smaller and more uniform as compared to the raw MRI. Even
though the KDE of the preprocessed MRI is better than our proposed
method, it possesses the capability of learning a near to perfect common
transformation space for the raw MRI scans. Most importantly, these
new transformation contains AD discriminative features for the robust
prediction of the disease.

4.4. Multicenter automatic Alzheimer’s disease classification

We analyzed the dependency on using multi-center raw MRI scans
without typical preprocessing and the efficiency of our proposed 3D
CNNs on Alzheimer’s disease classification. The results in Table 4 show
that our deep learning model accurately classifies AD on multi-center
raw MRI scans. From the 2-way classification tasks results (accuracy:
91.5%, 90.0%, and 88.1% for AD vs. HC, AD vs. MCI, and MCI vs.
HC, respectively for the full 3D aligned RAW MRI scan, and best
accuracy: 97.23%, 96.30%, and 96.10% for AD vs. HC, AD vs. MCI, and
MCI vs. HC, respectively with the latent representations of the CAAE
with the statistical machine learning classifiers), it is evident that the
extracted features by the attention convolutional layer possess strong
discriminative power.

We evaluated the three binary classification tasks’ performance
using three main metrics: accuracy, sensitivity, and specificity. We
found out that our model achieved the best performance in all com-
parison with the five-baseline machine learning algorithms with both
8

Fig. 6. Kernel density estimation feature plot for the different acquisition protocols
for the raw MRI scans, output of CAAE and preprocessed scans.

the common aligned feature space extracted by the 3D CAAE and
the preprocessed MRI scans. Due to the nature of traditional machine
learning algorithms (SVM, Naïve Bayes, and Random Forest) needing
feature-engineered input because of the MRI scans’ complexity, the
traditional classifiers did not exhibit excellent performance both on the
full raw and preprocessed 3D MRI scans. Our model, specifically the
convolutional residual attention network, made complete use of the
AD-related information and utilized the new common aligned space
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S
C

Table 4
Performance (%) of the proposed method and selected baseline methods. The values in the parentheses are the standard deviations of each respective metric. Acc = Accuracy;
en = Sensitivity; Spe = Specificity; Avg = Average; RF = Random Forest; NB = Naïve Bayes; SAE = Sparse Autoencoder, CNN = Convolutional neural network, TCA = Transfer
omponent Analysis, SA = Subspace Alignment, CORAL = Correlation Alignment.

Method AD vs. HC AD vs. MCI MCI vs. HC

Acc. Sen. Spe. AUC Acc. Sen. Spe. AUC Acc. Sen. Spe. AUC

Preprocessed

Payan and Montana (2015) SAE 92.0
(0.10)

91.89
(0.07)

94.59
(0.08)

92.46
(0.05)

90.0
(0.15)

89.20
(0.11)

86.48
(0.08)

88.16
(0.06)

87.90
(0.05)

85.90
(0.06)

82.63
(0.05)

84.35
(0.10)

Luo et al. (2017) 3D CNN 91.0
(0.08)

90.51
(0.05)

91.78
(0.07)

88.74
(0.06)

88.43
(0.09)

87.0
(0.10)

85.65
(0.10)

86.05
(0.04)

85.12
(0.05)

84.90
(0.07)

81.69
(0.06)

84.10
(0.08)

Ortiz et al. (2015) SVM 86.49
(0.06)

88.20
(0.03)

87.46
(0.04)

86.96
(0.04)

83.0
(0.08)

84.0
(0.09)

82.41
(0.01)

85.16
(0.12)

78.16
(0.07)

78.90
(0.09)

77.10
(0.06)

79.92
(0.07)

Gupta et al. (2019) NB 85.13
(0.06)

83.20
(0.05)

84.0
(0.05)

85.15
(0.03)

82.34
(0.04)

81.45
(0.07)

80.0
(0.05)

84.64
(0.10)

80.19
(0.06)

81.32
(0.03)

80.20
(0.04)

79.43
(0.08)

Maggipinto et al. (2017) RF 83.78
(0.09)

82.20
(0.06)

83.10
(0.10)

85.21
(0.06)

81.56
(0.06)

80.49
(0.07)

79.78
(0.05)

83.49
(0.06)

81.49
(0.03)

80.90
(0.04)

79.69
(0.07)

80.14
(0.03)

Pan et al. (2010) TCA 88.39
(0.05)

86.72
(0.08)

88.10
(0.06)

86.42
(0.01)

85.52
(0.05)

82.04
(0.03)

80.92
(0.04)

84.95
(0.06)

83.10
(0.04)

80.35
(0.05)

82.27
(0.06)

82.51
(0.05)

Fernando et al. (2013) SA 89.64
(0.06)

88.92
(0.05)

89.35
(0.01)

88.24
(0.05)

86.03
(0.06)

85.13
(0.07)

86.43
(0.04)

85.01
(0.05)

83.51
(0.04)

81.0
(0.03)

83.01
(0.06)

81.82
(0.02)

Kumar et al. (2017) CORAL 88.11
(0.04)

85.04
(0.04)

86.41
(0.03)

86.04
(0.04)

84.67
(0.05)

83.21
(0.03)

84.06
(0.05)

84.63
(0.03)

82.93
(0.04)

79.12
(0.06)

80.14
(0.06)

80.45
(0.05)

Ours CAAE + CRAT 93.10
(0.07)

95.40
(0.06)

96.11
(0.06)

94.86
(0.04)

91.41
(0.07)

92.32
(0.09)

93.12
(0.05)

92.20
(0.04)

89.26
(0.05)

89.45
(0.06)

91.13
(0.09)

90.23
(0.09)

Raw MRI

Payan and Montana (2015) SAE 82.43
(0.03)

80.14
(0.06)

82.17
(0.05)

79.06
(0.04)

81.56
(0.05)

83.20
(0.05)

80.21
(0.04)

79.83
(0.03)

76.67
(0.06)

75.34
(0.04)

73.17
(0.05)

74.37
(0.07)

Luo et al. (2017) 3D CNN 81.08
(0.06)

80.01
(0.07)

80.90
(0.05)

78.27
(0.06)

80.73
(0.08)

79.24
(0.09)

78.48
(0.06)

79.13
(0.07)

73.05
(0.04)

72.27
(0.04)

72.18
(0.06)

73.47
(0.04)

Ortiz et al. (2015) SVM 74.0
(0.05)

73.23
(0.08)

74.0
(0.08)

75.06
(0.07)

72.0
(0.04)

72.34
(0.06)

73.12
(0.06)

73.38
(0.05)

42.0
(0.06)

51.11
(0.04)

49.70
(0.06)

54.07
(0.05)

Gupta et al. (2019) NB 75.0
(0.06)

74.12
(0.04)

75.34
(0.07)

75.18
(0.06)

68.0
(0.04)

69.0
(0.08)

67.23
(0.05)

72.15
(0.09)

46.0
(0.04)

56.78
(0.05)

52.60
(0.07)

55.62
(0.06)

Maggipinto et al. (2017) RF 74.0
(0.07)

72.78
(0.10)

73.50
(0.09)

74.27
(0.08)

66.0
(0.05)

67.15
(0.06)

65.20
(0.05)

69.45
(0.05)

55.0
(0.07)

54.13
(0.08)

53.56
(0.08)

56.69
(0.06)

Pan et al. (2010) TCA 75.61
(0.03)

76.01
(0.05)

77.52
(0.04)

75.82
(0.05)

70.25
(0.07)

69.72
(0.04)

70.04
(0.05)

71.88
(0.05)

62.57
(0.02)

61.46
(0.04)

63.91
(0.05)

60.14
(0.01)

Fernando et al. (2013) SA 77.04
(0.02)

76.01
(0.05)

77.52
(0.07)

76.02
(0.05)

73.12
(0.03)

72.85
(0.07)

73.27
(0.05)

73.41
(0.06)

64.70
(0.06)

64.03
(0.02)

66.42
(0.06)

62.91
(0.03)

Kumar et al. (2017) CORAL 75.26
(0.09)

73.62
(0.06)

75.20
(0.10)

75.79
(0.06)

69.80
(0.06)

69.24
(0.07)

71.50
(0.05)

70.84
(0.06)

61.08
(0.03)

62.20
(0.04)

63.28
(0.07)

59.86
(0.03)

Ours CAAE + CRAT 91.90
(0.04)

94.596
(0.0)

89.18
(0.05)

91.51
(0.04)

90.05
(0.06)

91.89
(0.05)

89.18
(0.07)

88.94
(0.04)

88.10
(0.04)

86.48
(0.03)

83.78
(0.05)

86.19
(0.05)

Raw CAAE Latent

Ours (Latent) CAAE + SVM 97.23
(0.06)

96.02
(0.07)

98.15
(0.06)

96.79
(0.05)

96.30
(0.05)

96.18
(0.07)

97.52
(0.04)

95.84
(0.05)

94.37
(0.03)

93.15
(0.04)

95.10
(0.05)

95.16
(0.04)

Ours (Latent) CAAE + NB 96.12
(0.03)

95.12
(0.05)

97.31
(0.03)

96.10
(0.03)

95.0
(0.02)

93.74
(0.04)

94.30
(0.06)

94.21
(0.02)

95.0
(0.04)

95.10
(0.02)

95.89
(0.03)

95.01
(0.04)

Ours (Latent) CAAE + RF 96.12
(0.05)

95.23
(0.06)

97.03
(0.04)

96.26
(0.07)

95.04
(0.08)

95.10
(0.03)

96.45
(0.06)

95.13
(0.07)

96.10
(0.04)

96.40
(0.06)

97.43
(0.05)

95.42
(0.06)
(in the 3D space) giving it superior performance over the traditional
classifiers.

4.5. Model interpretation and visualization

Fig. 7 shows the captured overlapping salient discriminative regions
for AD, MCI, and HC by applying the 3D CAM to our 3D CRAT for
the three binary classification tasks (AD vs. HC, AD vs. MCI, and MCI
vs. HC). Aforementioned in section 3.4, we modified the last block
of the CRAT architecture by replacing the max-pooling layer with
the global average layer to have the desired architecture in generat-
ing the class activation map for each binary classification task. The
heatmaps generated by the 3D CAM differentiate the importance of
the different brain regions contributing to the prediction of each AD
group. The 3D CAM generated by each AD binary classification task is
then overlayed on the MNI152 template as discussed in Section 3.4.
The distinct brain regions generated by each classification task’s 3D
CAM are compared with the Automated Anatomical Labeling (AAL)
atlas (Tzourio-Mazoyer et al., 2002). Ten representative regions (Squire
9

et al., 2007; Lerch et al., 2008; Eskildsen et al., 2015) of interest in the
AAL atlas are compared with the generated heatmaps. The following
regions of interest were used: left and right hippocampus, amygdala,
left and right middle temporal gyrus, left and right superior temporal
pole, parahippocampus, insula, and precuneus. See Appendix.B for
the ten representative regions. Specifically, six overlapping regions
were identified by our model relating to AD, when compared with
all the three binary classification task overlays. The captured regions
include the left and right hippocampus, parahippocampus, amygdala,
left and right middle temporal gyrus in predicting AD, MCI, and HC.
See Table 5 for significant brain regions contributing to Alzheimer’s
disease’s diagnosis in order of importance. We observed that the areas
of the hippocampus stand out as the most discriminative parts. It should
be noted that the activated heatmap is upsampled from a 22 × 22 × 22
coarse heatmap.

4.6. Ablation study on external datasets

To further verify the proposed method’s effectiveness, we tested
the trained models on two popular external AD datasets. The datasets

are the Australian Imaging, Biomarker and Lifestyle Flagship Study of
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Fig. 7. Salient 3D attention-map overlapping regions relating to Alzheimer’s disease classification. An Increasing colormap scale indicates that the region is more significant for
classifying the disease. Heatmaps from CAM were generated and overlaid on the Montreal Neurological Institute’s standard brain for the three binary classification tasks (AD vs.
HC, AD vs. MCI, MCI vs. HC). Six salient overlapping regions of interest (left and right hippocampus, parahippocampus amygdala, and left and right superior temporal pole) were
observed for AD prediction. The red color indicates the brain morphometric region playing the most pivotal role in the prediction of AD. L = Left; R = Right.
Table 5
Ordered significant regions from the Class Activation Map related to the prediction of
AD patients, mild cognitive impairment patients, and cognitively normal individuals. L
= Left; R = Right.

No. AD vs. HC AD vs. MCI MCI vs. HC

1 L Hippocampus L Hippocampus Parahippocampus
2 R Hippocampus R Hippocampus L Hippocampus
3 Parahippocampus Parahippocampus R Hippocampus
4 L. Temporal pole L. Temporal pole L. Temporal pole
5 R. Temporal pole R. Temporal pole R. Temporal pole
6 Amygdala Amygdala Amygdala
7 Precuneus Precuneus –
8 Insula Insula –
9 Middle temporal gyrus Middle temporal gyrus –
10 Cingulate gyrus Cingulate gyrus –

Ageing (AIBL) (Ellis et al., 2010) and the National Alzheimer’s Coordi-
nating Center (NACC) (Beekly et al., 2004). For each external dataset,
we used 195 subjects where 65 belong to each of the classifying groups.
The performance is illustrated in Table 6. It can be seen that although
the prediction on the preprocessed MRI scans achieved better results
than the raw scans aligned to a common space, the performance is
still comparable. The experimental results prove that the convolutional
adversarial model and the attention mechanism can predict AD without
a robust preprocessing pipeline. Also, the proposed model is likely to
have improved performance when trained from scratch on the external
dataset and a larger dataset.

5. Discussion

This current study proposed a new model for handling variations
in multi-center AD classification with raw MRI scans without any con-
ventional preprocessing. Compared with other baselines, results have
demonstrated the out-performance of capturing the significant brain
regions for AD on raw MRI scans without typical preprocessing.

5.1. Towards an end-to-end approach for multicenter analysis

Alzheimer’s disease classification models using MRI scans are mostly
constructed using multi-center databases. Such datasets pose additional
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challenges for statistical analysis but offer opportunities for model gen-
eralizability to different centers. AD classification using deep learning
methods tailored to multi-center raw neuroimaging data are understud-
ied. There is a lack of transparency in developing a generalized model
using preprocessed MRI scans. Hence, multi-center AD classification
approaches using raw neuroimaging data to handle center variability
have untapped potential. It is not surprising that many AD researchers
use multi-center neuroimaging datasets as a substrate in developing
deep learning prediction models for the disease. The caveat to these
previous researches (Zhang et al., 2021b; Hosseini-Asl et al., 2016;
Li et al., 2019b,a; Jo et al., 2019a) is the incorporation of typical
neuroimaging preprocessing pipeline to the disease characterization
process and making the generalizability of the model depend on many
factors such as the wholesome quality of the preprocessing step used,
the AD domain expert involved, and the manually extracted region of
interest (ROI) related to the disease. For an AD classification model
to be more useful, it must be reliable in new centers (different clinics
or hospitals), time-saving, and involving fewer or no domain experts.
The fact that variability exists in multi-center MRI scans shed light
on the need for a more robust deep learning model to generalize AD
prediction irrespective of the neuroimaging data source. Our multi-
center variability handling approach enables efficient and reliable AD
prediction using multi-center raw MRI scans while eliminating typical
neuroimaging preprocessing pipeline. Specifically, our 3D convolu-
tional adversarial autoencoder network can eliminate processes such as
skull stripping, head motion correction, registration, and parcellation
of brain regions in a typical AD classification pipeline, introduced as
a result of multi-center MRI variations. It is worth noting that our
approach’s automatic variability handling is significant in classifying
Alzheimer’s disease (Crutch et al., 2012; Ossenkoppele et al., 2015).
Hence, automatic multi-center AD prediction is of significant interest if
characterized by the skipping of MRI preprocessing while handling the
variations that exist. Our experiments also demonstrated the reduction
of variation between raw MRI scans and the common aligned space
generated by our CAAE by the calculated HD distance metric. The
ablation study results (see Table A.8 Appendix.D) show that CAAE
plays a critical role in the multi-center variability handling and is also
the Achilles’ heel of the overall performance of the proposed method.
Specifically, when CAAE is removed from the proposed method, the
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Table 6
Ablation performance (%) of the trained model on AIBL and NACC datasets. Acc = Accuracy; Sen = Sensitivity; Spe = Specificity.

AD vs. HC AD vs. MCI MCI vs. HC

Acc. Sen. Spe. AUC Acc. Sen. Spe. AUC Acc. Sen. Spe. AUC

AIBL

Preprocessed MRI + CAAE + CRAT 83.42 72.09 88.75 89.02 80.90 70.34 87.10 86.02 73.59 69.36 84.08 83.71
Raw MRI + CAAE + CRAT 79.13 69.82 85.73 87.43 76.52 67.61 85.37 85.91 70.67 67.35 83.04 81.60

NACC

Preprocessed MRI + CAAE + CRAT 81.47 73.51 89.34 88.52 77.88 70.13 86.94 84.81 72.17 67.91 83.34 81.98
Raw MRI + CAAE + CRAT 78.56 71.20 86.70 86.03 75.45 67.87 84.02 82.05 69.73 66.0 80.97 78.05
classification results drops drastically. Though our model had a better
alignment score over the raw MRI scans, the preprocessed MRI scanned
recorded the best alignment score, as showed in Table 3 and needs more
future research works in this domain for a complete multi-center MRI
variation handling with deep learning techniques.

5.2. AD relevant regions with attention mechanism

In evaluating our results, we report four established metrics: accu-
racy, specificity, sensitivity, and AUC. We classified AD vs. HC, AD vs.
MCI, and MCI vs. HC with excellent accuracy of 91.5%, 90.0%, and
88.1%, respectively for the raw fully aligned MRI scans (3D space),
based on the train-and-test setting. From the baseline approaches im-
plemented, the classification accuracy for AD vs. HC, the work of Payan
and Montana (2015) performed slightly better than our approach when
using the fully aligned raw MRI scans in their 3D space, but it is
probably from the prior extraction of ROI from the MRI scans before
passing it through their deep learning architecture. When our proposed
two-stage method was applied on the preprocessed MRI scans, the
results (accuracy of 93.10%, 91.41%, and 89.26% for AD vs. HC, AD
vs. MCI, and MCI vs. HC, respectively) surpassed all the 3D space MRI
scans results. Our aligned raw MRI scans results were comparable with
the preprocessed form more than the other baseline methods on the 3D
space MRI scans.

From Table 4, the classification performance of our proposed
method consistently outperforms the conventional handcrafted feature-
based harmonization methods (TCA, SA, and CORAL).

We also explored the performance of the three statistical machine
learning classifiers (SVM, NB, and RF) on the CAAE latent represen-
tations/embeddings of the aligned MRI scans in their one-dimensional
space (1D). Surprisingly, the classifiers performed greatly on the latent
representations produced by our CAAE model. In Table 4, the classi-
fication performance on the latent representations produced the best
accuracies of 97.23%, 96.30%, and 96.10% for AD vs. HC, AD vs. MCI,
and MCI vs. HC, respectively. The classification performance on the
latent representations of the raw aligned MRI scans performed better
than the full raw aligned MRI scans in the 3D space, but we are more
interested in the alignment capability of our CAAE producing more
discriminative features for these classification models. This experiment
confirms that MRI scans in the 3D space is hugely affected by the curse
of dimensionality problem. Although the aligned MRI scans in the 3D
space contains more features, they are very sparse making it difficult
for learning models to extract relevant information as compared to
its latent representations. The incorporation of the automatic CAAE
alignment model provides a promising research path and further works
in handling automatic MRI variations in AD diagnosis.

We further established the AD-specific discriminative pattern of at-
rophy with our deep learning model’s classifiers to predict these classes.
The residual modules and the attention components of the 3D-CRAT
architecture played a pivotal role in discriminating the pivotal regions
of the brain for AD prediction. The AD-related brain regions that best-
discriminated AD from other groups (MCI, HC) are identified as the
hippocampus, parahippocampus, amygdala, anterior cingulate gyrus,
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medial temporal lobe, and the areas of the subcortical thalamic-basal
ganglia, which is consistent with previous findings of characterizing
structural brain changes in AD (Budding et al., 2020; Hao et al., 2020;
Oh et al., 2019; Hu et al., 2021; Su et al., 2021).

In general, computational cost is not an issue for our proposed MRI
alignment method. The average runtime (in hours) of the typical MRI
preprocessing pipeline is 172 h. The runtime for the proposed CAAE
method is approximately 108 h making it the best option in respect
to runtime and performance. The training of the deep learning CRAT
classification model took roughly 17 h.

With the ubiquity of data preprocessing in neuroimaging, almost
all previous research works handled the variability between multi-
center MRI data in AD prediction by applying the typical preprocessing
pipeline. This makes it difficult to make a holistic comparison with our
current work. Notwithstanding this difficulty, our recorded results per-
formed well, if not exceptional, from studies in this domain. It is worth
noting that the present study is based on a limited number of subjects,
and further works using a larger multi-center dataset is necessary for
future works. Admittedly, the training of our deep learning model was
computationally intensive and time-consuming.

5.3. Nonparametric statistical analysis

To ascertain whether there exist significant differences among the
baseline methods, the Friedman ranking test and the Nemenyi post-
hoc test (Hodges and Lehmann, 2012; Demšar, 2006), are used to
statistically analyze the results for the test prediction accuracy and
the HD variation assessment. We first perform the Friedman test on
the averaging rankings of each results to calculate their p-values at
the 5% significance level. When the calculated 𝑝-value is smaller than
0.05, it rejects the null hypothesis that there is no significant difference
between the comparison methods. If the null hypothesis is rejected,
we then perform the Nemenyi post-hoc test to ascertain the significant
differences between these methods. Table 7 shows the average rankings
of the Friedman test for the AD prediction tasks for all methods.

We observed that our proposed method has the highest average
rankings (best four ranks). The reported p value is 2.41𝑒−09, which indi-
cates there are significant differences among all the baseline methods at
the 5% significance level. This 𝑝-value rejects the null hypothesis that
there is no statistical difference between the baseline methods since the
𝑝-value is smaller than the 5% significance level. Furthermore, we use
the Nemenyi post-hoc test to further confirm the significant differences
by constructing the critical difference (CD) diagram (Fig. 8) using the
average ranks for all methods.

We also performed the statistical analysis of our method with only
the preprocessed baseline methods. The Friedman ranking test recorded
a 𝑝-value of 6.77𝑒−06, which shows there is a statistical difference
between this comparison. The associated Nemenyi post-hoc test is
shown in Fig. 9. Figs. 8 and 9 show the post-hoc Nemenyi test produced
a critical difference of 17.12 and 10.53 on the average ranks of all
baseline methods and preprocessed methods respectively, revealing
which algorithms were statistically significantly different from each
other. Specifically, it denotes that our proposed method ranked higher
than other competing methods.

Finally, we statistically analyzed the HD variation assessment among

the MRI scans with different acquisition protocol, as showed in Table 8.
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Table 7
Average rankings of the Friedman test of the proposed method and selected baseline methods for AD prediction with p-value
= 2.41𝑒−09 and Avg. R = Average Rank.

AD vs. HC. AD vs. MCI MCI vs. HC. Avg. R

Our CRAT 91.90 90.05 88.10 5.33
Our(Pre.) CRAT 93.10 91.41 89.26 4.0
Our SVM 97.23 96.30 94.37 1.67
Our NB 96.12 95.0 95.0 2.5
Our RF 96.12 95.04 96.10 1.83
Payan and Montana (2015) SAE 92.00 90.00 87.90 5.67
Luo et al. (2017) 3DCNN 91.00 88.43 85.12 7.0
Ortiz et al. (2015) SVM 86.49 83.0 78.16 11.67
Gupta et al. (2019) NB 85.13 82.34 80.19 12.0
Maggipinto et al. (2017) RF 83.78 81.56 81.49 12.50
Pan et al. (2010) TCA 88.39 85.52 83.10 9.0
Fernando et al. (2013) SA 89.64 86.03 83.51 8.0
Kumar et al. (2017) CORAL 88.11 84.67 82.93 10.0
Raw SAE 82.43 81.56 76.67 13.83
Raw 3DCNN 81.08 80.73 73.05 15.0
Raw SVM 74.0 72.0 42.0 19.50
Raw NB 75.0 68.0 46.0 19.66
Raw RF 74.0 66.0 55.0 20.16
Raw TCA 75.61 70.25 62.50 17.33
Raw SA 77.04 73.12 64.70 16.0
Raw CORAL 75.26 69.80 61.08 18.33
Table 8
Average rankings of the Friedman test variation assessment on HD (mm) for the
different acquisition protocols for AD classes with p-value = 0.096.

Raw MRI CAAE aligned space MNI152 registered

P1 vs. P2. 48.91 13.49 10.17
P1 vs. P3. 51.77 14.53 12.32
P2 vs. P3. 51.64 15.63 12.95
Avg 50.77 14.38 11.81
Avg. Rank 3.0 2.0 1.0

Fig. 8. Nemenyi post-hoc test on all prediction tasks for all baseline methods.
Our(Pre)-CRAT is the CRAT method used on the preprocessed MRI scans.

The 𝑝-value for the Friedman ranking test is 0.096 on the average
rankings. Although the Friedman ranking test does not reject the null
hypothesis, the smaller 𝑝-value indicates the competitiveness of the
proposed CAAE model in respect to the manual registered MRI scans.

5.4. Limitation and future works

This study is not without limitations. The proposed approach’s lim-
itations are three-fold: (i) The dataset used in this study is size-limited
and future works need validation on a vast multi-center database where
MRI heterogeneity is likely to increase; (ii) The proposed architecture
cannot handle multi-modal Alzheimer’s dataset (MRI, PET, clinical
records, etc.); and (iii) Although the computational time for the convo-
lutional adversarial autoencoder is better than the typical manual MRI
preprocessing pipeline, we admit that it is computationally expensive
(time complexity) and needs an improved optimization procedure.
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Fig. 9. Nemenyi post-hoc test on all prediction tasks on preprocessed baseline methods.

Therefore, in our future works, we would consider the following as-
pects: (i) Expand the dataset’s size and validate our proposed model on
a larger multi-center heterogeneous dataset; (ii) Modified our proposed
methodology to work on an advanced fusion of multi-modal data set for
robust heterogeneity handling; and (iii) Consider how to optimize the
proposed method more efficiently.

6. Conclusion

In this paper, we proposed a robust soft-attention-based 3D residual
network, which automatically predicts AD on multi-center raw struc-
tural brain MRI scans and spares conventional MRI preprocessing effort
compared to several recent proposed approaches. The 3D convolutional
adversarial autoencoder network enhances the AD features’ generaliza-
tion, captures its biomarkers, and aligns the raw multi-center MRI scans
into a common space. Finally, the aligned MRI scans from the unsuper-
vised network are used for AD prediction using the supervised 3D soft
attention network on a subset of the ADNI dataset. Also, we showed
the robustness of our CAAE aligned method by performing prediction
on its latent embedding by using traditional statistical classifiers. The
results demonstrated that representational feature extraction, such as
anatomical variations, was enhanced in hidden layers of the 3D CAAE
by better discriminating between AD, MCI, and HC raw MRI scans with-
out typical user-based preprocessing with our trained classifiers. This
research provides novel insights in handling multi-center neuroimaging
data variabilities and warrants thorough independent studies in the
future. The results have demonstrated the out-performance of capturing
the significant brain regions for AD on raw MRI scans without typical
preprocessing.
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