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A B S T R A C T   

Open-set recognition aims to deal with unknown classes that do not exist in the training phase. 
The key is to learn effective latent feature representations for classifying the already known 
classes as well as detecting new emerging ones. In this paper, we learn multiple Gaussian pro
totypes to better represent the complex classes distribution in both generative and discriminative 
ways. With the generative constraint, the latent variables of the same class clusters compactly 
around the corresponding Gaussian prototypes, preserving extra space for the samples of un
known classes. The discriminative constraint separates the Gaussian prototypes of different 
classes, which further improves the discrimination capability for the known classes. Importantly, 
the entire framework can be directly derived from the Bayesian inference, thus providing theo
retical support for open-set recognition. Experimental results of different datasets verify the 
reliability and effectiveness of the proposed method. Our code is available at: https://github. 
com/LiuJMzzZ/MGPL.   

1. Introduction 

In recent years, the field of deep learning has progressed rapidly and received widespread attention. Classification tasks in different 
application scenarios such as medical images [1], remote sensing [2] and multivariate time series [3] have achieved amazing per
formances. Traditional classification tasks are assumed in a closed set, where all categories in the test set are from the training set. 
However, in practical application scenarios, some unknown categories that have not appeared during training may occur in the testing 
phase [4]. Under these circumstances, the closed-set classifiers can only make the prediction by choosing one of the known categories, 
which limits the applicability in dynamic and changing scenarios. 

To overcome this limitation, the open-set recognition task is introduced by [5], in which the open-set model is able to classify the 
known classes and detect new emerging classes at the same time. In the open-set scenario, categories from the training set are defined 
as known classes, and the newly appeared categories in the testing set are called unknown classes. Therefore, the key to handle the 
open-set problem is to define a feasible confidence score selection strategy [6,7] or to learn an effective latent feature representation 
space [8,9]. 

For the novel unknown classes in testing, it is intuitive to set a threshold on the output confidence of a network to detect the 
unknowns. However, the Softmax-based deep network tends to be overfitting on known classes [10]. Using Softmax to obtain the 
probability over the known classes will also cause the model to generate a higher degree of confidence for the unknown classes, and in 
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turn make the confidence thresholds infeasible to select. To tackle this limit, OpenMax [11] used a calibrated score to replace the 
Softmax layer in the traditional networks. The core idea is to model the distribution of distances to the mean activation of each class 
and define the reject threshold based on extreme value theory (EVT). In this way, an unknown sample can be detected by measuring 
the distance to the mean activation of known classes. On this basis, some works have been further proposed [12,13]. These methods 
estimated the class distribution in latent space by computing the average class activation value after training the model which cannot 
model the real class distribution. In fact, for complex datasets in real scenarios, the distribution of each category may be more 
complicated, and it is difficult to describe the distribution of each class with only one center. 

Another focus for open-set recognition is to learn a better latent feature space. Traditional closed-set classification methods are 
mostly of discriminative models. These closed-set classifiers only focus on learning the decision boundaries between different known 
classes rather than obtaining the intrinsic distribution of the known classes, and features of the known classes tend to occupy the entire 
latent space, reserving no space for the newly appeared classes. Therefore, it would be much better for open-set learning if the latent 
features of the same class are gathered together compactly and the features of different classes are far from each other. In this way, 
effective feature representations for known classes can be obtained, and meanwhile extra space can also be reserved for unknown 
classes in changing scenarios. Some works have made contributions to model the distribution in the latent space from the perspective 
of generation [14–16]. For example, CGDL [15] constrained the hidden space to a Gaussian distribution related to the category through 
the conditional VAE. However, these methods learned the feature space only in the generative way which will reduce the ability of 
classification. Some other hybrid models have been proposed recently [17,18], but these methods are all heuristic and lack the 
theoretical framework. 

Aiming at the above problems, we propose a novel method called Multiple Gaussian Prototypes Learning (MGPL) to learn the effective 
latent space representation. As shown in Fig. 1, the distribution of known classes in the latent space can be represented by Gaussian 
prototypes, each of which is formed by a Gaussian distribution with specific parameters and a predefined class label. To handle the 
complex data distribution, multiple Gaussian prototypes are assigned to each class. These Gaussian prototypes are derivable and can be 
optimized by gradient descent methods with the entire framework from both the generation and discrimination perspectives. Under 
the generative constraint, the latent variables tend to gather around the corresponding Gaussian prototypes compactly and preserve 
some space for the unknown classes. To further improve the discrimination ability, Gaussian prototypes of different classes are 
separated from each other under the discriminative constraint. Importantly, the entire framework is derived from the Bayesian 
inference, providing theoretical support for open-set recognition tasks. Variable experiments with the existing methods on the 
benchmark datasets are conducted, and our proposed method exhibits very competitive performances with satisfactory reliability and 
effectiveness on the open-set recognition tasks. 

Contributions of our work are summarized as follows:  

• We have established a new open-set recognition framework, where the multiple Gaussian prototypes are learned to represent the 
classes distribution in the latent space. The classification capability for known classes is maintained while recognizing the 
unknowns;  

• We derive the entire framework through Bayesian inference from both the generation and discrimination perspectives, providing 
theoretical support for open-set recognition;  

• We conduct variable experiments on the benchmark datasets used for open-set recognition tasks, and our proposed method shows 
very competitive results and outperforms the existing methods by a large margin in several cases. 

Fig. 1. The latent space of the traditional closed-set classifier (CNN) compare to our proposed MGPL open-set model. We can infer that the closed- 
set classifier only aims to learn the decision boundary that split the whole latent feature space for known classes. Therefore, the newly appeared 
classes samples are more likely to be recognized as a known class. In our proposed MGPL model, the latent features of known classes compact around 
the corresponding Gaussian prototypes, and the Gaussian prototypes of different classes are separated, reserving extra space for the detection of 
unknown classes. Moreover, multiple Gaussian prototypes are assigned to represent the same class to handle the complex data distribution. 
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2. Related Work 

2.1. Open-set Recognition 

While closed-set classification has been widely studied, more attention is paid to open-set recognition for its capability of detecting 
the unknown classes while classifying the known ones. The open-set recognition concept was first introduced by [5]. At present, open- 
set recognition methods can be broadly divided into three categories: discriminative methods, generative methods, and hybrid 
methods. 

Discriminative Methods. In the early stages, some traditional machine learning methods were proposed to solve the open-set 
recognition problem. For example, based on the extreme value theory (EVT), [19] proposed a Weibull-calibrated SVM which 
considered a distribution of decision scores for unknown detection. A similar method was also presented in [20]. Extreme value 
machine (EVM) [21] modeled the probabilities of known classes inclusion through theoretical analysis. [22] proposed a sparse- 
representation-based method called SROSR, which also utilized the EVT to identify unknowns through reconstruction error. The 
open-set nearest neighbor method [23] recognized unknown samples using similarity scores between the nearest and second nearest 
classes. [24] proposed a three-way clustering approach for novelty detection. In recent years, deep learning approaches had shown 
great performances in closed-set classification tasks due to their powerful representation abilities. In the origin of deep open-set 
methods [11], Openmax was proposed to detect unknown classes by modeling the distance between output logits and activation 
vectors with a Weibull distribution model. [25] replaced the softmax layer in the network with a k-sigmoid layer to train the neural 
network. Similarly, CROSR [26] shared the idea of reconstruction-based representation, which models the class-belongingness by 
combining classification logits and latent representations. However, these supervised models only segment the infinite latent space for 
known classes, leaving no area for unknown classes. 

Generative Methods. Apart from discriminative methods, generative models further take distributional information into consider
ation, which can be divided into two types. The first branch obtains a robust classifier by generating unknown instances. With the help 
of synthetic unknown instances, the classifier was able to learn a more explicit representation for partitioning known and unknown 
classes such as G-Openmax [12] and OSRCI [13]. However, the above methods were restricted to the quality and variety of the 
generated unknown instances. Another type of generative method solved the open-set recognition problem by modeling the inherent 
distribution of known classes. The generative models such as variational auto-encoder (VAE) were widely used in this type of method. 
For example, C2AE [14] trained a class conditional auto-encoder in two steps (closed-set training and open-set training), and the 
unknown samples were rejected by reconstruction errors based on the Extreme Value Theory. Additionally, a conditional Gaussian 
distribution learning (CGDL) method was proposed in [15], which modeled the bottleneck representation of the input samples by 
forcing latent features of each class to approximate a specific Gaussian model. Unknown samples were detected by both Gaussian 
probability and reconstruction errors. Similar to CGDL, CVAECapOSR [27] was also based on a CVAE framework and learned the latent 
features by capsule networks. [16] introduced a Gaussian mixture variational auto-encoder method for open-set recognition, which 
cooperatively learned reconstruction and performed class-based Gaussian mixture clustering in the latent space. However, these VAE- 
based architectures lack discriminative constraints to maintain the performance of known classification. 

Hybrid Methods. Combining both generative and discriminative methods, several hybrid methods have been presented more 
recently. [17] proposed a framework called OpenHybrid, which included an encoder, a classifier, and a flow-based density estimator. 
In this architecture, the flow-based density estimator was used to detect whether a sample belongs to the unknown category. In [18], a 
convolutional prototype network (CPN) was proposed, which learned a CNN feature extractor and derivable prototypes for known 
classes representations end to end with the combination of generative and discriminative losses. [28] presented the concept of 
reciprocal points which potentially represent the extra-class space corresponding to each known category. Additionally, GFROR [29] 
trained a generative model to represent known classes and utilized a self-supervision method to separate the classes in the latent space. 
PROSER [30] learned data and classifier placeholders for the unknown classes. Nevertheless, these hybrid methods were heuristic and 
lacked a strong theoretical foundation for distribution modeling. 

2.2. Novelty Detection 

Unknown detection in open-set recognition is similar as the novelty detection task (also called outlier detection), which aims to 
detect outlier samples from the normal ones. Traditional novelty detection methods were mainly based on support vector machine 
(SVM) [31] or isolation forest [32]. In recent years, methods based on the deep neural network have been more applied for novelty 
detection tasks. The auto-encoder based approaches [33,34] were widely used, in which the auto-encoders were utilized to extract the 
common latent representations from normal samples, and novelties were then detected by reconstruction errors. Apart from auto- 
encoders, some studies used generative adversarial networks (GANs) for novelty detection. For example, [35] utilized GANs to 
generate the potential out-of-distribution samples which helped the model to learn robust discriminative boundaries. MANomaly [36] 
designed a mutual adversarial network for the network intrusion detection. For some discriminative methods, [37] first detected the 
novelty samples through the output softmax probabilities and demonstrated that the novelties tended to be related to a lower 
maximum softmax probability. ODIN [38] improved the novelty detection performance with the technique of temperature scaling and 
input perturbations. [6] learned the inlier distribution by adversarial training and used confidence estimation for more effective 
novelty detection. The existing novelty detection tasks only aimed to distinguish unknown novelty samples from known samples, with 
no need to classify known classes. But in open-set recognition, the capability of detecting unknown samples and discriminating known 
samples are both required. 
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2.3. Prototype Learning 

Prototypes stand for the representative exemplars [39,40] or feature vectors of a category [41,42], representing the category 
distribution in the instance or feature space. The best-known prototype learning method is k-nearest-neighbor (KNN). To save storage 
space and improve computation efficiency, [39] proposed a better method called learning vector quantization (LVQ). In recent years, 
prototype learning was more combined with feature learning through neural network models. Under this framework, the prototypes 
can be regarded as learnable parameters which are optimized by self-defined loss functions. [41] proposed a center loss to learn centers 
for deep feature representation of each category and intra-class variance reduction. GCPL [42] designed several prototype losses to 
learn the representative and discriminative prototypes, which were meanwhile used as a regularization to improve the intra-class 
compactness. [43] extracted the prototypes at multiple levels of granularity with local optimization for the classification task. [44] 
proposed a graph prototypical contrastive learning approach for unsupervised graph representation learning. However, most of the 
existing methods set the prototypes in the form of feature vectors and only learned the prototypes by discriminative loss. In our 
proposed method, each prototype is treated as a Gaussian distribution rather than a feature vector. These Gaussian prototypes are 
learned in a probabilistic way with both generative and discriminative constraints to guarantee the representation ability of feature 
distribution in the latent space. 

3. Preliminaries 

3.1. Open-Set Recognition 

Given training set Dtrain =
{
(x1, y1),…,

(
xn, yn

) }
with n labeled instances and N known classes, yi ∈ {1,…,N} is the label of data xi. 

In the testing phase, there is a larger amount of test data, Dtest =
{
(x1, y1),…,

(
xt , yt

) }
. The label of the testing set belongs to 

{1,…,N,N + 1}, where the category N+1 is the label of potential unknown data. Note that the unknowns could include different 
classes and their specific classes are not focused in the open-set recognition task. Therefore all unknown classes are represented by the 
same category N + 1. 

3.2. Variational Auto-encoder 

We briefly review the terminology and notation of VAE [45] before introducing the proposed method. We denote the observation as 
x and the latent variable as z. In VAE, the encoding process maps the input information into a constrained distribution in the latent 
space, while the decoding process tries to reconstruct the input observation. 

From the perspective of Bayesian inference, the decoder models the probabilistic generative processes of x given the continuous 
representation z. The generation process first generates a latent variable z from the prior distribution pθ(z), and then samples the data 
from the generative distribution pθ(x|z), where θ denotes the model parameters. We approximate the posterior distribution pθ(z|x) by 

another distribution qϕ(z
⃒
⃒
⃒x), which is computed by the probabilistic encoder with parameter ϕ. The decoder pθ(x|z) and encoder 

qϕ(z
⃒
⃒
⃒x) are learned simultaneously by maximizing the evidence lower bound (ELBO): 

LELBO = Eqϕ(z|x)[logpθ(x|z)] − KL
(

qϕ

(
z|x
)
‖p
(

z
))

, (1)  

in which the first term is the reconstruction of x by maximizing the log-likelihood logpθ(x|z) with sampling from qϕ(z
⃒
⃒
⃒x), and the second 

term regularizes the latent variable z by minimizing the KL divergence between the approximated posterior and the prior of the latent 
variable. 

A typical choice for the prior pθ(z) is the standard Gaussian distribution N (0,1). The decoder pθ(x|z) and encoder qϕ(z
⃒
⃒
⃒x) are fit 

through two deep networks. And the KL divergence can be calculated as: 

− KL
(
qϕ
(
z|x
)
‖pθ
(
z
))

= −
1
2
∑d

i=1

(
μ2

i + σ2
i − logσ2

i − 1
)
,

(2)  

where d is the dimension of the latent space, and μi, σi denote the ith dimension value of vector μ and σ, respectively. 

3.3. Conditional Variational Auto-encoder 

Directly derived from the VAE model, conditional variational auto-encoder (CVAE) aims to approximate the conditional distri
bution p(x|y), where y is the class information of x. Similar to vanilla VAE, CVAE also consists of an encoder and a decoder, and while 
the encoder maps the input x and the class y to a prefixed distribution over the latent variable z with label information, the decoder 
aims to reconstruct the input samples x of a given category y by z. By adding the condition y to the vanilla VAE, the ELBO of CVAE can 
be obtained directly as: 
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LELBO = Eqϕ(z|x,y)[logpθ(x|z, y)] − KL
(

qϕ

(
z|x, y

)
‖p
(

z|y
))

, (3)  

CVAE is not a specific architecture but a collection of methods that varies in the way of introducing the label information with different 
purposes, such as [46,47]. One simple approach is to introduce class information into the latent space, where a unique conditional 
prior is assigned to each class. To this end, p(z|x) is constrained to a Gaussian prior N (μy, I) by KL divergence, in which the mean μy is a 
variable and can be trained by the model. In this way, the KL divergence term of CVAE can be calculated as: 

− KL
(
qϕ
(
z|x, y

)
‖pθ
(
z|y
))

= −
1
2
∑d

i=1

[
(μi − μy

i )
2
+ σ2

i − logσ2
i − 1

]
.

(4)  

Our proposed method is based on the above theoretical framework, and the multiple Gaussian prototypes prior to effective open-set 
recognition is further introduced and thoroughly discussed in the following section. 

4. Proposed Method 

4.1. Overview 

In this section, the proposed method is introduced and elaborated. In view of the problems that appeared in the existing open-set 
recognition methods, we propose Multiple Gaussian Prototype Learning (MGPL). As shown in Fig. 2, our proposed architecture includes 
an encoder, a decoder, and multiple Gaussian prototypes in the middle for training. Similar to CVAE, the encoder acts as a feature 
extractor that encodes the original distribution into the latent space, and the decoder samples from the latent space to generate samples 
in the original space. The Gaussian prototypes can be regarded as representations of each class in the latent space. Different from other 
existing methods, there is no additional fully-connected (FC) network classifier in our proposed architecture. 

Generally, we consider a generalized negative log-likelihood objective to model the joint distribution of the known samples pθ(x, y)
as follows: 

L MGPL = Ex,y∼D [ − logpθ(x, y)]. (5)  

Then, the log of the joint distribution logpθ(x, y) is decomposed into: 

logpθ(x, y) = λlogpθ(x|y)p(y)+ (1 − λ)logpθ(y|x)p(x). (6)  

This decomposition naturally combines the two constrain terms into a hybrid objective, where the preceding generative constrain term 
concerns the generation task logpθ(x|y) given the label y, and the following discriminative constrain term concerns the classification 

Fig. 2. Proposed MGPL model. The framework contains an encoder network, a decoder network, and multiple Gaussian prototypes that are learned 
to represent the class distribution in the latent feature space. The whole model is optimized under both generative and discriminative constraints 
derived by Bayesian inference. Under the generative constraint, the reconstruction term guides the generated sample to be similar to the input 
sample, the conditional prior term reduces the distance between the sample features and the Gaussian prototypes of the same class, and the entropy 
prior term prevents the multiple prototypes that represent the same class from collapsing. Meanwhile, the discriminative constraint drives the 
sample features away from the Gaussian prototypes of different classes and closer to the ones of the same class. 
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task logpθ(y|x). The hyper-parameter λ balances the influence between the two constraints. 
Finally, by combining Eq. 5 and 6, we obtain the objective of our proposed method: 

L MGPL ≈ λEx,y∼D [ − logpθ(x|y)]
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

L gen

+

(

1 − λ

)

Ex,y∼D

[
− logqϕ

(
y
⃒
⃒x
)]

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
L dis

. (7)  

Note that logpθ(x|y) is intractable to compute, so it is approximated with variational distribution logqϕ(x
⃒
⃒
⃒y). The logp(x) and logp(y)

terms are also omitted because their expectations are constants with no model parameters. Detailed derivations of the generative and 
discriminative constraints are presented in the following subsections. 

4.2. Gaussian Prototype 

A Gaussian prototype w is a tuple (μw, σw, y) where y is the class label and μw, σw are the mean and deviation of the Gaussian 
distribution of the prototype defined as N (μw,σw). The Gaussian prototypes can be regarded as representations of the distribution of 
each class in the latent space. Each class distribution is represented by K Gaussian prototypes, resulting in K × C prototypes in total, 
where C is the number of known classes. In the proposed method, the mean μw is a trainable parameter, the deviation σw is set to an 
identity matrix I for simplification, and the corresponding class y is predefined and fixed. 

Previous methods [11,13,26] represent the distribution of known classes by calculating the mean activate vectors of each class after 
the training phase. Then the Euclidean distances between the test sample and the mean activate vectors are computed as the confidence 
score. However, the mean activate vectors might not be qualified representations of latent space distribution, for they are only suitable 
to estimate the Gaussian-like distribution, and the real distribution of the activate vectors of each class is not usually constrained to be a 
Gaussian distribution. Moreover, computing only one mean activate vector is insufficient to represent the complex and arbitrary 
feature space. Furthermore, the mean activate vector is merely a computed statistical value after the testing phase, with no reliable 
optimization constraints during the training. 

In our proposed method, the latent space is constrained to be composed of several Gaussian regions of different classes, with each 
region represented by multiple Gaussian prototypes. Different from the previous CVAE-like methods in which only one Gaussian 
prototype is assigned to each class, our proposed method utilizes multiple Gaussian prototypes to handle more complex data distri
butions. The mapping relationship between the classes and the Gaussian prototypes is one-to-many, that is, a Gaussian prototype 
represents a specific class, yet a class can be represented by more than one Gaussian prototype due to the complex distributions of the 
input data. 

The Gaussian prototypes can also be regarded as the latent variables in Eq. 7 under both generative and discriminative constraints 
via the Bayesian inference, as demonstrated in Fig. 3. The discriminative constraint makes the Gaussian prototype directly available for 
classification tasks with no need for additional classifiers. In the implementation, each Gaussian prototype is formed by two d- 
dimensional vectors with parameters including μw and σw, where d is the dimension of the predefined latent space. These parameters 
are randomly initialized and then trained with the whole network architecture end-to-end, which are updated by optimization 
methods based on gradient descent. 

4.3. Generative Constraint 

The generative constraint aims to approximate logpθ(x|y) to get a more effective feature representation in a generative way. General 
CVAE models only embed each class into one specific Gaussian distribution. However, one Gaussian prototype for each class in the 
latent space may not be sufficient for input distributions and tasks with higher complexity. Therefore, our proposed method represents 
each class with a mixture of Gaussian distributions, i.e. multiple Gaussian prototypes. To this end, a modified variational inference 
method is proposed below. 

Two types of variables are included in our method: observable variables and latent variables. Observable variables include input 
sample x and output category y. Different from the previous CVAE frameworks, there are two latent variables z and w in our proposed 

Fig. 3. Graphical models of Bayesian inference for MGPL. The generative constraint contains inference process in (a) and generation process in (b) 
that handles conditional generation. The discriminative constraint can be explained by the discrimination process in (c) that guides the 
classification. 
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method. z is a continuous variable representing the encoding feature vectors and w is a discrete variable representing the Gaussian 
prototype. 

Similar to many VAE based methods, we approximate pθ(x|y) with a variational Bayesian method and get the ELBO function as: 

logpθ(x|y) = log
∑

w

∫
pθ
(
x, z,w|y

)
dz

= log
∑

w

∫
qϕ
(
z,w|x, y

)pθ(x, z,w|y)
qϕ
(
z,w
⃒
⃒x, y

) dz

= logEqϕ(z,w|x,y)

[
pθ(x, z,w|y)
qϕ
(
z,w
⃒
⃒x, y

)

]

⩾Eqϕ(z,w|x,y)

[

log
pθ(x, z,w|y)
qϕ
(
z,w
⃒
⃒x, y

)

]

= LELBO

(8)  

where qϕ(z,w
⃒
⃒
⃒x, y) is the inference process and pθ(x, z,w|y) is the generation process. 

As shown in Fig. 3(a)(b), the inference and generation process are further decomposed as: 

qϕ
(
z,w|x, y

)
= q
(
w|z, y

)
qϕ
(
z|x
)

pθ(x, z,w|y) = p(w|y)p(z|w)pθ(x|z).
(9)  

In the generation process, p(w|y) is the prototype prior in a given class y, which is set to be uniform distribution equal to 1/K for each 
prototype for balance. p(z|w) follows a Gaussian distribution N (z; μw,I). Same as previous VAE frameworks, pθ(x|z) is approximated by 
the decoder network. A sample of p(x) can be generated through the following procedure. First, for a given category y, select a Gaussian 
prototype w of this category with probability p(w|y). Then, draw z from this Gaussian prototype by p(z|w). And finally, an original 

sample x can be generated from the decoder qϕ(x
⃒
⃒
⃒z). 

In the inference process, pθ(z|x) is the latent feature that forms as a Gaussian distribution. This is approximated by the encoder 
network with the reparameterization trick. q(w|z, y) is a categorical distribution which computes the assignment probability from z to 
the K Gaussian prototypes w of label y by distance, defined as: 

q
(
w|z, y

)
:= q

(
z ∈ wij|y

)
=

e− γd(z,wj)

∑K

l=1
e− γd(z,wyl)

, (10)  

where γ is the temperature parameter for smoothing the output probability and wyl denotes the Gaussian prototypes with class label y. 
d(⋅) stands for the distance between z and w. Considering that both z and w are Gaussian distributions, we use KL divergence to measure 
the distance between z and w, defined as: 

d(z,w) = KL(N (μx, σx)||N (μw, I)). (11)  

Then the ELBO of generative constraint can be given by: 

LELBO = Eqϕ(z,w|x,y)

[

log
pθ(x, z,w|y)
qϕ
(
z,w
⃒
⃒x, y

)

]

= Eqϕ(z|x)q(w|z,y)

[

log
pθ(x|z)p(z|w)p(w|y)

qϕ
(
z
⃒
⃒x
)
q
(
w
⃒
⃒z, y

)

]

= Eqϕ(z|x)[logpθ(x|z)] − Eq(w|z,y)
[
KL
(
qϕ
(
z
⃒
⃒x
)⃦
⃦p
(
z
⃒
⃒w
))]

− Eqϕ(z|x)[KL(q(w|z, y)‖p(w|y))],

(12)  

and the three terms of LELBO are explained below. 
The first term, i.e. reconstruction term, is defined as: 

Eqϕ(z|x)[logpθ(x|z)] = ‖x̂ − x‖2, (13)  

where x̂ is the reconstructed sample. This term is calculated by minimizing the reconstruction error of the generated sample. In this 
way, the latent variable z can keep more original information by generation to benefit open-set detection. 

The second term, i.e. prototype conditional prior term, is defined as: 
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Eq(w|z,y)
[
KL
(
qϕ
(
z
⃒
⃒x
)⃦
⃦p
(
z
⃒
⃒w
))]

= Eq(w|z,y)[KL(N (z; μx, σx)‖N (z; μw, I))]

= Eq(w|z,y)

∑d

i=1

1
2

[(
μi
(
x
)
− μw

i

)2
+ σ2

i − logσ2
i − 1

]
.

(14)  

This term enforces the latent variable z to fit its conditional Gaussian prototype prior by KL divergence, meaning that z should be close 
to and gather into clusters around the Gaussian prototypes of its category. 

The third term is a prototype entropy prior term. Note that p(w|y) = 1/K is for all prototypes w of label y, so this term is defined as: 

Eqϕ(z|x)[KL(q(w|z, y)‖p(w|y))] = Eqϕ(z|x)

∑

w∈Wy

[

− q
(

w
⃒
⃒
⃒
⃒z, y

)

log
q(w|z, y)
p(w|y)

]

,

= Eqϕ(z|x)

∑

w∈Wy

[ − q(w|z, y)logK(q(w|z, y))].
(15)  

This term aims to force the prototype probabilities of each class into a uniform distribution. In other words, it aims to maximize the 
entropy of the K prototypes that represent the same class, and prevent these multiple Gaussian prototypes from collapsing to one. 

4.4. Discriminative Constraint 

Intuitively, the generative constraint pushes the latent variables closer to the Gaussian prototypes of the corresponding category. To 
further improve the discrimination ability, the discriminative constraint is set to separate the feature and the Gaussian prototypes of 
different classes in the latent space. Same as the generation process, the discrimination process can also be explained by the Bayesian 
inference framework. 

The purpose of the class discrimination task is to maximize the posterior probability from x to y on the correct class, which is 
defined as: 

logqϕ
(
y|x
)

= log
∑

w

∫
qϕ
(
y,w, z|x

)
dz

= log
∑

w

∫
q
(
y|w
)
q
(
w|z
)
qϕ
(
z|x
)
dz,

(16)  

where qϕ(z
⃒
⃒
⃒x) is the latent feature forms as a Gaussian distribution, same as the common VAEs, and is approximated by the encoder 

network and optimized by the reparameterization trick. q(y|w) is a known and fixed probability because each Gaussian prototype w has 
its own corresponding class y. Specifically, like an indicator function, q(y|w) equals to 1 for the corresponding class and 0 for the other 
classes. 

As for q(w|z), it can be regarded as the probability that assigns the latent variable z to the Gaussian prototype w. Therefore, it is 
natural that closer Gaussian prototypes obtain higher probabilities. Note that both the latent variable z and the Gaussian prototype w 
follow the Gaussian distribution, so it is simple to use KL divergence to measure the distances from a latent variable to the Gaussian 
prototypes. By normalizing these distances, q(w|z) can be computed as: 

q
(
w|z
)
:= q

(
z ∈ wij

)
=

e− γd(z,wij)

∑C

k=1

∑K

l=1
e− γd(z,wkl)

, (17)  

where d(⋅) is the KL divergence and γ is the temperature parameter for smoothing the output probability. K is the number of Gaussian 
prototypes for each class and C is the total number of known classes. Note that q(w|z) computes the assignment probability of all K × C 
Gaussian prototypes, but q(w|z, y) in Eq. 10 only computes the assignment probability of the K Gaussian prototypes with the same label 
y. 

Substitute Eq. 17 into Eq. 16, and the discriminative constraint can be obtained: 

logqϕ
(
y|x
)
= log

∑K

j=1
e− γd(z,wyj)

∑C

k=1

∑K

l=1
e− γd(z,wkl)

, z ∼ qϕ
(
z|x
)
. (18)  

In summary, minimizing discriminative constraints will decrease the distances from the instance features to prototypes with the 
corresponding category, and increase the distances from the instance features to prototypes with incorrect categories, which makes 
prototypes with different categories more separated from each other. 
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4.5. Testing 

After trained by both generative and discriminative constraints, one encoder and decoder network that approximates qϕ(z
⃒
⃒
⃒x) and 

pθ(x|z) can be obtained. Meanwhile, the parameters of Gaussian prototypes w which represent the distribution of each class in the 
latent space are also obtained. 

Unlike other methods that are in need of an additional classifier, in the proposed method, Gaussian prototypes can be regarded as a 
natural discriminator for finding the nearest Gaussian prototype. Specifically, given an instance x, its latent variable z is first obtained 

by the encoder network qϕ(z
⃒
⃒
⃒x). Then the nearest Gaussian prototype w* can be obtained by comparing the distances from z to all the 

Gaussian prototypes wij: 

w* = argminwij

{
d
(
z,wij

) }
, z ∼ qϕ

(
z|x
)
. (19)  

Finally, the input sample will be recognized as unknown if the minimum distance is over a given threshold τ, otherwise, it will be 
classified to the class of the nearest Gaussian prototype w*: 

ypred =

{
Unknown, ifd(z,w*) > τ,
Class of w*, otherwise, (20)  

where τ is decided by ensuring 95% of data in the validation set to be recognized as known [15,29]. Since the model can well constrain 
the feature distribution of known classes into a certain region represented by the multiple Gaussian prototypes, it is an effective way for 
threshold estimation by choosing a majority 95% of samples in the validation set as known. 

5. Experiment 

In this section, the performance of the proposed method on benchmark datasets is evaluated and compared with the state-of-the-art 
methods. Same as the recent works in this area [29,27], our experiment settings are followed by the protocol in [13]. We first report the 
performance on unknown detection and open-set recognition tasks. Then we visualize the latent space and the confidence score with 
the CIFAR10 dataset to analyze the benefit of the proposed method. Meanwhile, an ablation study is conducted to analyze the 
contribution of each part stage by stage. Hyper-parameters and the execution time of our proposed method are also analyzed. The 
results show that our proposed method achieves very competitive performance and is reliable and effective on open-set recognition 
tasks. 

5.1. Implementation Details 

In the proposed method, we set the same hyper-parameter settings for all datasets. We use the Adam optimizer with a learning rate 
of 0.001 and fix the batch size to 32 in all training phases. Each class is assigned with three Gaussian prototypes (K = 3), which are 
initialized by the random normal distribution with a fixed dimension of 128. The balance parameter λ of constraint terms is set to 
0.005. For the network architecture, a modified ResNet-18 network with batch normalization is used as the encoder and the decoder is 
the mirror structure. Following [27], we add a skip connection with random dropout between the middle layer of the encoder and 
decoder network. In this way, the shallow layers will focus more on the detail reconstruction while the deep layers focus more on 
learning the latent space. Random center-cropped and random horizon flip are used as data augmentation except for MNIST. All 
experiments are conducted on a computer with Intel E5-2678 2.5 GHz CPU, 32 GB RAM, and Nvidia RTX 3090 GPU for computational 
acceleration. 

5.2. Unknown Detection 

During the experiment, we validate the ability of our proposed method on detecting unknown samples. For a fair comparison, our 
experimental setting follows the same protocol defined in [13], where only several classes are selected from a dataset to train the 
model, while the rest are considered as unknown samples. Several benchmark datasets are used for evaluation, including MNIST, 
SVHN, CIFAR10, and Tiny-ImageNet. MNIST, SVHN, and CIFAR10 datasets all contain 10 classes, and 6 classes are randomly selected 
as known samples to train the model, with the 4 remaining classes as unknown samples. Moreover, with 4 classes in the CIFAR10 
dataset sampled as the known-set classes, 10 or 50 classes from the CIFAR100 dataset are randomly selected as open-set classes, which 
is reported as CIFAR + 10 or CIFAR + 50. For Tiny-ImageNet, which is a subset of ImageNet [48] with 200 classes, we randomly select 
20 classes as known classes with the rest as unknowns. As is a binary recognition task, the Area Under the Receiver Operator Char
acteristic curve (AUROC) score is used to measure the performance of known and unknown detection. 

In the unknown detection task, for each dataset, 5 combinations of known and unknown classes splits are selected and the results 
are reported by the average of these different splits, where the value before ± represents the mean and the value after ± represents the 
standard deviation. However, as recently discussed in [29], performance across different splits varies significantly (e.g. AUROC on 
CIFAR10 varied from 0.77 to 0.87 across different splits). We consider the reason is that different class split brings different levels of 
difficulty for open-set recognition tasks, which leads to serious problems in reproducibility and comparison. Therefore, we report the 
results that are evaluated by the same known-unknown splits in [13] from [13,?,?,?]. For the work that uses different classes splits 
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[30], we re-run the released public code of the original paper with the same class splits in [13]. In this way, our proposed method is 
compared with the previous methods under the same evaluation settings to guarantee the fairness and reproducibility. As shown in 
Table 1, compared with previous works, our proposed method achieves the best performance on all datasets. 

5.3. Open-Set Recognition 

In open-set recognition, the classifier needs to not only reject unknown samples correctly but also have a good performance on 
known classification. Therefore, we present the comparison of closed-set accuracy between the plain CNN (closed-set classifier) and 
the proposed method MGPL in Table 2. For a fair comparison, the plain CNN in Table 2 has the same backbone architecture (ResNet- 
18) as the encoder of the proposed MGPL method. With this experimental setting, we aim to compare the closed-set classification 
accuracy between the plain CNN and the proposed method. For the plain CNN, a fully connected layer with softmax is added to the 
Resnet-18 feature extraction encoder for classification. As for the proposed method, the Gaussian prototypes are utilized directly to 
replace the fully-connected layer classifier for the classification task after the ResNet-18 encoder. Although MGPL is an open-set 
classification method, its discriminative ability is not decreased or even better than the closed-set classifier on some datasets. 

Under the following experimental settings, the performance of our proposed method is validated with open-set recognition tasks 
including both known classification and unknown detection. The model is trained on all the training data of one dataset, but during the 
testing phase, the test sets are added with unknown samples from another dataset. The open-set recognition performance is measured 
by the macro-averaged F1-scores over all known classes and the unknown class, with the MNIST and CIFAR10 datasets used as known 
samples for training. 

In the first experiment, MNIST is considered as the training dataset, which is a very common dataset consisting of handwritten 
digits of 0–9. Following the setting in [26], we choose three datasets, Omniglot [49], MNIST-Noise and Noise, as open-set samples. 
Omniglot is a dataset containing various alphabet characters with images of 28 × 28 grayscale similar to MNIST. MNIST-Noise is 
synthesized by adding noise to MNIST testing samples. Noise is synthesized by randomly sampling each pixel value independently from 
a uniform distribution on [0, 1]. Examples of these datasets are shown in Fig. 4. Same as MNIST, each open dataset contains 10,000 test 
samples, with a known-to-unknown ratio of 1:1. The results are shown in Table 3, and it can be observed that our proposed method 
achieves the best performance on all given datasets. 

In the second experiment, samples of all classes in CIFAR10 are chosen as known samples, with images of vehicles and animals. 
Following the setting in [26], samples in ImageNet [48] and LSUN [50] dataset are selected as unknown samples. To keep the same size 
as known samples, unknown samples are resized or cropped to generate four open datasets including ImageNet-crop, ImageNet-resize, 
LSUN-crop, and LSUN-resize. Same as the test set of CIFAR10, each open dataset contains 10000 samples. In this way, the known-to- 
unknown ratio is set to 1:1. We evaluate the open-set recognition performance with macro-averaged F1-scores between 10 known 
classes and 1 unknown class, and the results are shown in Table 4. Although a small misperform can be observed in one dataset 
compared to the best method, our proposed method leads the best performance in the rest three datasets. Moreover, it can also be 
observed from Table 4 that the performance of LSUN is very close to the recent methods, but there is an obvious increase for ImageNet. 
We consider the reason is that ImageNet is a more complex dataset than LSUN and requires more of an algorithm’s ability to learn 
effective representations for the open-set recognition task, which means there is still room for improvement. 

5.4. Visualization 

In this section, we conduct two types of visualization with the CIFAR10 dataset. The CIFAR10 dataset contains 10 classes, in which 
6 animals classes (bird, cat, deer, dog, frog, and horse) are considered to be known classes and 4 vehicle classes (airplane, car, ship, and 
truck) to be open-set classes. The performance of a plain CNN network is compared with the proposed method. 

First, in Fig. 5, we show the learned latent space of a plain CNN and the proposed method. The high-dimensional latent features are 
reduced to 2D by T-SNE for visualization. Fig. 5(a) shows that in the latent feature space of the plain CNN, features of open-set and 

Table 1 
Unknown detection performance in terms of the Area Under the Receiver Operator Characteristic Curve (AUROC) score. Results are averaged among 
5 different splits of known and unknown classes. As discussed in Section 5.2, all the results are evaluated on the same class splits for a fair comparison. 
N.R. is used when there is no particular value in the original paper.  

Methods SVHN CIFAR10 CIFAR + 10 CIFAR + 50 Tiny-ImageNet 

Softmax 0.886 0.677 0.816 0.805 0.577 
OpenMax [11] 0.894 0.695 0.817 0.796 0.576 

G-OpenMax [12] 0.896 0.675 0.827 0.819 0.58 
OSRCI [13] 0.91 ± 0.01 0.699 ± 0.038 0.838 0.827 0.586 
CROSR [26] 0.899 ± 0.018 N.R. N.R. N.R. 0.589 
C2AE [14] 0.892 ± 0.013 0.711 ± 0.008 0.810 ± 0.005 0.803 ± 0.000 0.581 ± 0.019 
CGDL [15] 0.896 ± 0.023 0.681 ± 0.029 0.794 ± 0.013 0.794 ± 0.003 0.653 ± 0.002 
PRL [28] 0.931 ± 0.014 0.784 ± 0.025 0.885 ± 0.019 0.881 ± 0.014 0.711 ± 0.026 

GFROR [29] 0.955 ± 0.018 0.831 ± 0.039 0.915 ± 0.002 0.913 ± 0.002 0.647 ± 0.012 
CVAECapOSR [27] 0.956 ± 0.012 0.835 ± 0.023 0.888 ± 0.019 0.889 ± 0.017 0.715 ± 0.018 

PROSER [30] 0.944 ± 0.016 0.791 ± 0.045 0.862 ± 0.006 0.852 ± 0.015 0.662 ± 0.005 
MGPL (ours) 0.957 ± 0.011 0.840 ± 0.021 0.927 ± 0.010 0.918 ± 0.003 0.730 ± 0.031  
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Table 2 
Comparison of closed-set accuracy between the plain CNN (closed-set classifier) and the proposed method MGPL with the same network backbone. 
Although MGPL aims at classifying known samples as well as learning Gaussian prototypes, there is no significant degradation in closed-set accuracy.  

Architecture MNIST SVHN CIFAR10 Tiny-ImageNet 

Plain CNN 0.996 0.964 0.929 0.546 
MGPL (ours) 0.996 0.967 0.932 0.547  

Fig. 4. Dataset example of original MNIST, Omniglot, MNIST-noise, and Noise.  

Table 3 
Open-set classification results on MNIST dataset with various outliers added to the test set as unknowns. The performance is 
evaluated by macro-averaged F1-scores in 11 classes (10 known classes and 1 unknown class).  

Methods Omniglot MNIST-noise Noise 

Softmax 0.595 0.801 0.829 
OpenMax [11] 0.780 0.816 0.826 
CROSR [26] 0.793 0.827 0.826 
CGDL [15] 0.850 0.887 0.859 

PROSER [30] 0.862 0.874 0.882 
MGPL (ours) 0.981 0.978 0.981  

Table 4 
Open-set recognition results on CIFAR10 with various outliers added to the test set as unknowns. The performance is evaluated by macro F1-score in 
11 classes (10 known classes and 1 unknown class).  

Methods ImageNet-crop ImageNet-resize LSUN-crop LSUN-resize 

Softmax 0.639 0.653 0.642 0.647 
Openmax [11] 0.660 0.684 0.657 0.668 

OSRCI [13] 0.636 0.635 0.650 0.648 
CROSR [26] 0.721 0.735 0.720 0.749 
C2AE [14] 0.837 0.826 0.783 0.801 
CGDL [15] 0.840 0.832 0.806 0.812 
RPL [28] 0.811 0.810 0.846 0.820 

GFROSR [29] 0.821 0.777 0.843 0.784 
CVAECapOSR [27] 0.857 0.834 0.868 0.882 

PROSER [30] 0.848 0.824 0.867 0.856 
MGPL (ours) 0.862 0.862 0.869 0.868  

Fig. 5. Visualization of the latent feature space of (a) plain CNN and for (b) the proposed method. The proposed method learns a more compact and 
separatable latent space. 
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known-set samples are mixed together, which is difficult to detect open-set samples. However, the latent space of the proposed method 
shown in Fig. 5(b) indicates that with the help of multiple Gaussian prototypes, the open-set and known-set samples have fewer 
overlaps, and the known-set classes are more compact into clusters. 

Then, we visualize the confidence score histograms of open-set and known-set samples generated by a plain CNN and the proposed 
method, as shown in Fig. 6(a)(b) respectively. For baseline CNN, we define the maximum output logit before the Softmax layer as the 
confidence score in the traditional way. For our proposed method, the maximum negative distance to the Gaussian prototypes is 
defined as the confidence score. We can infer from Fig. 6 that the confidence scores for the known-set samples gather more tightly in 
the proposed method. Therefore, the known-set and open-set samples are more separated in the proposed method. Meanwhile, the 
tightly-gathered known-set confidence score makes selection of the reject threshold much easier. 

Furthermore, in Fig. 7, we compare the receiver operating characteristic (ROC) curve and the precision-recall (PR) curve between 
the plain CNN and the proposed method. It can be observed that the proposed method exhibits much better performance than the plain 
CNN at various threshold settings including low and very low false alarm regimes, indicating that the proposed method is able to detect 
unknown samples effectively and robustly. 

In summary, the proposed method achieves a more compact and separated latent space for open-set recognition. The score dis
tribution of the known-set samples is tighter and has fewer overlaps with that of the open-set samples, leading to better open-set 
rejection performance. 

5.5. Ablation Study 

In the ablation study, the contribution of each part is analyzed stage by stage from the baseline CNN to our proposed method. The 
ablation study is also conducted using the CIFAR10 dataset with the classes splits the same as in Section 5.4. The following cases are 
considered.  

• CNN þ FC uses a plain CNN as the feature extractor and a fully-connected (FC) network as the classifier. In the testing phase, the 
open-set scores are calculated through the maximization of the output logits of all known classes.  

• CVAE þ FC uses a conditional auto-encoder as the latent feature extractor under the generative constraint mentioned in Section 
4.3. The latent features are then output to a fully-connected network for classification. During the testing phase, distances from the 
learned features to the center of all known classes are calculated, and the open-set score is defined by the minimum distance.  

• MGPL (Single Prototype) replaces the FC classifier with the Gaussian prototype classifier, where each class is presented by one 
Gaussian prototype. The testing procedure is similar to ”CVAE + FC” where the mean of the prototypes is regarded as the center of 
the corresponding class.  

• MGPL (Proposed) extends the single prototype to multiple prototypes for a better representation of the latent feature space. 

It can be observed from Table 5 that using CVAE as the generative constraint improves the open-set recognition ability of the plain 
CNN, but slightly decreases the classification performance. Meanwhile, the discrimination ability is maintained by replacing the FC 
classifier with the Gaussian prototype classifier. Moreover, utilizing more Gaussian prototypes to represent the latent space can further 
enhance the performance of closed-set classification and open-set rejection. The ablation study validates that each part of the proposed 
method contributes to the improvement of performance. 

5.6. Hyper-Parameters Analysis 

In this section, the influences of hyper-parameters are analyzed. There are two key hyper-parameters in the proposed method. The 
first one is parameter λ, the trade-off between the generative and discriminative terms in the loss function. The second one is parameter 
K, the number of the Gaussian prototypes of the same class. The hyper-parameters analysis is conducted using the CIFAR10 dataset 
with the classes splits the same as in Section 5.4, and the performance is measured by the AUROC and accuracy. 

Fig. 8 shows the impact of λ. Naturally, increasing the value of λ raises the effect of the generative constraint, making the model 

Fig. 6. Score histograms for open-set and known-set samples by (a) the plain CNN and (b) the proposed method. The score distribution of the 
proposed method are less overlapping and the known-set scores are tighter. 
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focus more on the generation task rather than the classification task. The balance parameter λ is tuned from 0.0005 to 0.05. Raising λ in 
a small range from zero increases the AUROC score, which means the generative constraint will improve the unknown detection task. 
However, a high λ is most likely to harm the classification task and decrease the unknown detection performance. Therefore, the final 
suitable value of λ is chosen as 0.005 to bring the best performance for both known classification and unknown detection. 

Fig. 9 shows the impact of K, which is tuned from 1 to 7. It can be observed that using multiple Gaussian prototypes rather than only 
one prototype increases the performance of both closed-set classification and open-set detection. However, the performance stops to 
improve continually and tends to stabilize when the number of Gaussian prototypes K passes 3. In addition, the powerful represen
tation capabilities of deep neural networks also help with feature learning, so it is robust to tune the number of prototypes. Therefore, 
in consideration of improving the performance as well as reducing model complexity, the value of K is set to 3. More prototypes may be 
beneficial when the data distribution is too complex or hard to approximate. 

5.7. Execution Time Analysis 

To analyze the execution time, we compare the proposed method with related works in terms of the training time with the CIFAR10 
dataset. It can be observed in Fig. 10 that although the proposed method is a hybrid model under both generative and discriminative 
constraints, our execution time is at the same level as the discriminative methods Softmax, Openmax [11] and the hybrid method 
Proser [30]. Compared to the generative methods OSRCI [13] and GFROSR [29], our proposed method consumes less time. As the most 
time-consuming method, OSRCI needs to first generate counterfactual images as novelties and then train the model with the initial 
dataset and the generated open-set instances. As the second time-consuming method, GFROSR feeds the reconstructed images to an 

Fig. 7. Comparison between the plain CNN (orange line) and the proposed method (blue line) by visualizing ROC and PR curve. It is shown that the 
proposed method performs better than the plain CNN. 

Table 5 
Ablation study on the model architecture. We report the classification performance (accuracy) and open-set rejection perfor
mance (AUROC) with different model architectures.  

Architecture Classification Accuracy Open-set Rejection (AUROC) 

CNN + FC 0.924 0.818 
CVAE + FC 0.917 0.854 

MGPL (Single Prototype) 0.924 0.863 
MGPL (Proposed) 0.927 0.871  

Fig. 8. The sensitivity analysis with λ in terms of (a) AUROC and (b) Accuracy.  
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extra classification model. In contrast, our framework needs no extra training since both the generative and discriminative constraints 
are integrated into an entire framework and trained in a one-step way. As a result, our proposed method not only utilizes hybrid 
constraints for performance improvement of open-set recognition, but also holds an efficient training process. 

6. Conclusion and Future Works 

In this paper, we present a novel method named MGPL for open-set recognition, which aims to handle the unknown classes that do 
not exist in the training phase. In our proposed method, multiple Gaussian prototypes are learned to better represent the complex 
classes distribution in both generative and discriminative ways. The generative constraint guides the latent variables to compact 
around the Gaussian prototypes of the corresponding class, and the discriminative constraint separates the prototypes of different 
classes to improve the discrimination capability. More importantly, the entire model can be derived by Bayesian inference, providing 
theoretical support for open-set recognition tasks. Variable experiments on several benchmark datasets are conducted and satisfactory 
results are achieved. The experimental results prove that the proposed method can learn more effective latent representation with 
higher reliability and efficiency in open-set recognition tasks. 

In future works, we will explore the means to discover and cluster the detected unknown samples into different categories, since all 
the unknown samples are grouped into the same novel class in the current method. In this way, not only can the known classes be 
classified, but also the newly appeared unknown classes can be detected and clustered. Furthermore, in the infinite data stream, to 
incrementally learn these novel class samples after discovering them might be an important focus for future research. In our proposed 
method, the class distribution can be well represented by the multiple Gaussian prototypes. Intuitively, these multiple Gaussian 
prototypes can be added or updated easily, which provides a good starting point for further research on open-set recognition in the 
evolving data stream. 
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