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Abstract—In this paper, we introduce a novel method to
discover common and distinct structural connectivity patterns
between SZP and MDD via a Cluster-Driven Nonnegative
Matrix Factorization (called CD-NMF). Specifically, CD-NMF
is applied to decompose the joint structural connectivity map
into common and distinct parts, and each part is further
factorized into two sub-matrices (i.e. common/distinct basis
matrix and common/distinct encoding matrix) correspondingly.
By imposing the clustering constraints on common and distinct
encoding matrices, the discriminative patterns as well as the
common patterns between the two disorders are extracted
simultaneously. Experimental results demonstrate that CD-
NMF allows finding the common and distinct structural
patterns effectively. More importantly, the derived distinct
patterns, show powerful ability to discriminate the patients
of schizophrenia and major depressive disorder.

Keywords-nonnegative matrix factorization; structural con-
nectivity; biomarker;

I. INTRODUCTION

Schizophrenia (SZP) and major depressive disorder

(MDD) are frequent psychiatric disorders with lifetime

prevalence of about 0.3-0.7%, and 3-17%, respectively.

While SZP and MDD differ in many symptomatic aspects,

they also show relevant overlaps in several dimensions and

levels. For example, clinical symptoms of patients with

SZP and MDD often transcend diagnostic categories, e.g.

loss of pleasure and interest can be found in patients with

schizophrenia and major depression, respectively [1], [2].

The genetic correlation for single nucleotide polymorphism

is about 0.43 between SZP and MDD, suggesting shared

genetic etiology and common pathophysiological pathways

[3]. It is also estimated that approximately half of pa-

tients with schizophrenia have comorbid with depression

[4]. Such overlaps are not limited to schizophrenia and

major depression, but a very general and fundamental aspect

of psychiatric-diagnostic categories, resulting in significant

doubts about sharp diagnostic borders between distinct psy-

chiatric disorders in general [5].

Nonnegative matrix factorization (NMF), has been shown

to be a powerful tool to handle high-dimensional data in

many applications. Considering the unique property of neu-

roimaging data (i.e. small number of samples yet with high

dimensionality), in this paper, we propose a novel cluster-

driven nonnegative matrix factorization method, called CD-

NMF, which aims at discovering the common and distinct

brain features between major depression and schizophrenia

simultaneously.

A. Basic Idea

Our cluster-driven NMF, works on a joint data matrix

(i.e. including the data of two groups), and decomposes it

into two parts: common part and distinct part directly. For

both parts, they are further factorized into two matrices like

traditional nonnegative matrix factorization, where one ma-

trix corresponds to the basis matrix (e.g. connectivity-pattern

matrix in this study) and the other characterizes the encoding

matrix (e.g. the subject-pattern matrix). To ensure the two

factorized basis matrices allow capturing the common and

distinct patterns simultaneously, we leverage the available

label information to impose the clustering constraints on the

two encoding matrices. Specifically, for the distinct part, if

we want to extract distinct patterns between two groups, we

may expect that the corresponding encodings for each group

are as similar as possible, and meanwhile, the corresponding

encodings of subjects between two groups are as different

as possible. Similarly, for the common part, we may expect

that the corresponding encodings of all subjects for both

groups are as similar as possible. By adding the clustering

constraints on encoding matrices, the two basic matrices

characterize the common and distinct patterns between two

groups intuitively.

To illustrate the cluster-driven nonnegative matrix fac-

torization, Fig. 1 gives an illustrative example. Given a

joint matrix A ∈ R
m×n, it is factorized into two parts:

common connectivity matrix Ac and distinct connectivity

matrix Ad, respectively (see Figure 2). The common con-

nectivity matrix Ac is further factorized into two matrices

Wc ∈ R
m×kc and Hc ∈ R

n×kc , where Wc represents the

common structural patterns shared by both disorders while

Hc indicates its corresponding weights for each pattern,

and kc is number of common structural patterns. Similarly,
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Figure 1: The illustration of our cluster-driven NMF for common and distinct structural pattern discovery. Given a joint

subject-connectivity map A, it is decomposed into common and distinct parts by imposing the clustering constraints on the

encoding coefficients, where the encoding coefficients of subjects in Hd,1, Hd,2 or Hc are as similar as possible, while the

encoding coefficients of subjects between Hd,1 and Hd,2 are as dissimilar as possible.

the distinct connectivity matrix Ad is factorized into two

matrices Wd ∈ R
m×kd and Hd ∈ R

n×kd , where Wd

represents the distinct structural patterns for two disorders,

Hd indicates its corresponding weights for each pattern and

kd is number of distinct structural patterns. To identify

the common and distinct connectivity patterns, we add

the constraints on the encodings Hd and Hc, respectively

(Fig. 1). For Hd, the encodings of subjects in one disorder

Hd,1 are similar and the encodings of subjects in another

disorder Hd,2 are similar. However, the Hd,1 and Hd,2 are

dissimilar. For Hc, the encodings of all subjects for both

disorders are similar. With this strategy, the common and

distinct patterns are intuitively obtained simultaneously.

II. RELATED WORK

During the past decade, many approaches have been

proposed to find the biomarker for MDD and SZP. In recent

years, an interesting line of biomarker research has focused

on the in-vivo brain neuroimaging data. Many studies have

demonstrated that the reduced regional gray matter volumes

[6], and aberrant white matter structural connectivity [7], are

frequently found in the cortical parts of intrinsic triple net-

works (i.e. default mode network, central executive network

and salience network [8]) in patients of MDD and SZP [9].

On the methodology side, during past decades, many

group-based NMF variants have been proposed, such as

[10], [11], [12]. For instance, Zafeiriou et al.[10] have

developed the discriminant NMF (DNMF), which extracts

features that enforce not only the spatial locality, but also

the separability between classes in a discriminant manner.

Similarly, Potluru et al.[13] have introduced a contrast term

to NMF (called co-NMF), to identify distinctive features

between two groups. Lee et al.[11] have proposed a semi-

supervised of NMF (SSNMF) by jointly exploiting both

limited labeled and plenty of unlabeled data to extract more

discriminative features. For most existing group-based NMF

approaches, they mainly focus on the discriminative pattern

discovery. Recently, Kim et al. [12] introduce a new joint

matrix factorization approach to simultaneously discovers

common as well as discriminative topics given multiple

document sets in an unsupervised way.

III. DATA ACQUISITION AND PREPROCESSING

Subjects and Data acquisition. 25 patients with major

depression, 21 patients with schizophrenia, and 25 healthy

controls participated in the study. All participants provided

informed consent in accordance with the Human Research

Committee guidelines of the Klinikum Rechts der Isar,

TechnischeUniversität, München. All subjects underwent

T1-weighted, and diffusion-weighted imaging in a 3T Philips

Achieva using an eight-channel phased-array head coil. We

instructed the participants to keep their eyes closed and

not to fall asleep during the 10-minute scan. T1-weighted

structural data were obtained using a magnetization-prepared

rapid acquisition gradient echo sequence, and Diffusion

weighted MRI was based on a pulsed gradient spin-echo

echo planar imaging sequence.

Construction of brain structural connectivity network.
To construct brain structural network, selected nodes of

default mode, salience network and executive network were

pre-defined by analysis of rs-fMRI data of an independent

sample of healthy controls. In brief, 25 healthy controls were

scanned on the same MRI scanner by the same rs-fMRI

sequence. Data were preprocessed and analyzed in the same

way as described in [9], [14]. Preprocessing includes motion

correction, smoothing, and normalization. High-model-order

group independent component analysis was performed to

identify components reflecting intrinsic networks. Using

spatial regression and spatial templates of default mode,

salience network and executive network based on Uddin et

al.[15], components-of-interest were selected. Nodes of de-

fault mode, salience network and central executive network

were defined as spherical regions-of-interest (ROI) of 3mm
radius and local peaks of networks. In total, 105 ROIs were
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Figure 2: The chartflow of structural brain network construction.

generated to represent three networks of interest: 30 ROIs

for the default mode network, and 37 ROIs for the salience

network and 38 ROIs for executive network. Building upon

these nodes, the flowchart of constructing the brain structural

connectivity network is illustrated in Figure 2. For more

information, please refer to the work [16].

IV. MINING COMMON AND DISTINCT STRUCTURAL

CONNECTIVITY PATTERNS

Building upon the derived joint structural connectivity

map, in this section we will introduce our cluster-driven

nonnegative matrix factorization to discover the common

and distinct structural connectivity patterns between major

depressive disorder and schizophrenia.

A. Cluster-driven Nonnegative Matrix Factorization

Formally, suppose that there are two patient groups with

distinct psychiatric disorders (e.g. major depression and

schizophrenia), the objective function is defined as follows.

min
Wc,Hc,Wd,Hd

f(Wc,Hc,Wd,Hd) = ||A−WcHc
T−WdHd

T ||2F
+fd(Hd) + fc(Hc) (1)

s.t. Wc ≥ 0,Wd ≥ 0 AND Hc ≥ 0,Hd ≥ 0

||Hd(·, l)||2 = 1, for l = 1, · · · , kd
||Hc(·, l)||2 = 1, for l = 1, · · · , kc

where fc(·) and fd(·) are the two penalty functions on

the encoding matrices. kd and kc are the number of distinct

and common structural connectivity patterns, respectively.

To identify the common and distinct connectivity patterns

between two disorders, we introduce a clustering-style con-

straints on the encoding matrices on both Hc and Hd. As

stated in Section I-A, as the encoding matrices represent

the weight for each connectivity pattern, if we want to

extract the distinct patterns, the corresponding weights for

different disorders should be as different as possible, and

meanwhile, the weights for subjects in the same disorder

are as similar as possible. Similarly, for extracting common

patterns, the corresponding weights for all subjects in both

disorders should be similar. Therefore, we define our penalty

functions of fd and fc as follows.

fd(Hd) = α1

(
||Hd,1 − Md,1||2F + ||Hd,2 − Md,2||2F

)
+α2||Hd,1 � Hd,2||21 (2)

fc(Hc) = α1||Hc − Mc||2F (3)

where α1 and α2 are the scalars controlling the relative

contribution of the corresponding terms. Hd,1 ∈ R
n1×kd and

Hd,2 ∈ R
n2×kd are the encoding matrices for two groups,

respectively. Hd = [Hd,1;Hd,2]. Md,1 is a n1 × kd matrix

where each row is a same vector of the average encoding

coefficients for major depression (i.e. 1
n1

∑n1

i=1 Hd(i, :)).
Similarly, Md,2 is a n2×kd matrix where each row is a same

vector of average encoding coefficients for schizophrenia

(i.e. 1
n2

∑n2

i=1 Hd(n1 + i, :)). Mc ∈ n × kc contains n
number of rows with the same vector of the encoding coef-

ficients for the whole Hc ( 1
n

∑n
i=1 Hc(i, :)). The two terms:

||Hd,1−Md,1||2F + ||Hd,2−Md,2||2F and ||Hd,1�Hd,2||21) are

thus used to construct two clusters, where the corresponding

encoding coefficients Hd,1 are a cluster and theHd,2 is

another cluster. The (i, j)-th component of Hd,1 � Hd,2

corresponds to the inner product between Hi
d,1, the i-th

row encoding coefficient of Hd,1, and Hj
d,2, the j-th row

encoding coefficient of Hj
d,2. In addition, the constraints

||Hd(l, ·)||2 = 1 and the minimization of ||Hd,1 � Hd,2||21
are finally to encourage the sparsity of Hd so that some of

them become exactly zero.

To solve this objective function, the block-coordinate

descent (BCD) framework is applied which guarantees every

limit point is a stationary point [17], and we obtain the

updating as follows.

w(l)
c ← w(l)

c +

[
(AHc)·l − Wd(HT

d Hd)·l − Wc(HT
c Hc)·l

(HT
c Hc)ll

]
+

(4)

w(l)
d ← w(l)

d +

[
(AHd)·l − Wc(HT

c Hc)·l − Wd(HT
d Hd)·l

(HT
d Hd)ll

]
+

(5)

h(l)
c ←

[
(AT Wc)·l − Hd(WT

d Wc)·l − Hc(WT
c Wc)·l

(WT
c Wc)ll + α1
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Algorithm 1 The Pseudocode of CD-NMF algorithm.

1: Input: the joint matrix A, integers kc and kd, and

parameters α1, α2

2: Initialize Wc, Wd, Hc and Hd

3: //Update each column of Wc and Hc

4: repeat
5: for i = 1 to kc do
6: Update Wc using Eq. (4);

7: Update Hc using Eq. (6);

8: end for
9: for i = 1 to kd do

10: Update Wd using Eq. (5);

11: Update Hd using Eqs. (7) and (8) ;

12: end for
13: until stopping criteria is satisfied.

14: Output: Wc, Wd, Hc and Hd;

+
H(l)

c (WT
c Wc)ll + α1 × m(l)

c

(WT
c Wc)ll + α1

]
+

(6)

h(l)
d,1 ←

[
(AT

1 Wd)·l − Hd,1(WT
d Wd)·l − Hc,1(WT

c Wd)·l
(WT

d Wd)ll + α1

+
h(l)
d,1(Wd

T Wd)ll + α1m(l)
d,1 − α2

2 1n1×1 · h(l)
d,2

T · 1n2×1

(WT
d Wd)ll + α1

]
+

(7)

h(l)
d,2 ←

[
(AT

2 Wd)·l − Hd,2(WT
d Wd)·l − Hc,2(WT

c Wd)·l
(WT

d Wd)ll + α1

+
h(l)
d,2(Wd

T Wd)ll + α1m(l)
d,2 − α2

2 1n2×1 · h(l)
d,1

T · 1n1×1

(WT
d Wd)ll + α1

]
+

(8)

Initialization. Here, we first partition the whole matrix

A into k = kc + kd clusters via K-Means algorithm (For

stable, the initialization of K-Means is fixed as the first k
objects to avoid randomness). Afterwards, the kd number

of the most different centroids is selected as the initial

distinct patterns and the remaining centroids are regarded

as the initial common patterns. For Hc, it is initialized

as: Hc = ones(n,kc)
n . Finally, Hd is obtained by using

HT
d = W−1

d (A − WcHT
c ).

B. CD-NMF Based Classification

Building upon the cluster-driven nonnegative matrix fac-

torization, the classification procedure mainly involves the

following steps:

1) Using any cross-validation strategy (e.g. 10-fold cross

validation) to partition the joint structural connectivity

map A into ATRAIN and ATEST for each fold.

2) For each fold, decompose ATRAIN using CD-NMF, and

obtain the distinct structural connectivity patterns Wd.

3) Building upon Wd, generate the new data STRAIN =
WT

d ATRAIN and STEST = WT
d ATEST.

4) Finally, STRAIN and STEST are used to train a support

vector machine classifier. The prediction performance

is finally averaged by all folds.

V. EXPERIMENT

A. Synthetic Data

We start the evaluation with synthetic data to prove the

concept of CD-NMF. To test whether CD-NMF can extract

the common and distinct patterns between two groups, here

a synthetic data matrix with size of 20 × 40 is generated

to contain two groups, where each column corresponds to

one sample and each group has 20 samples (see Fig. 3).

Five common patterns, across subjects of both groups, are

created (corresponding to the rows of 4,8,12,16,20). The six

distinct patterns for the first group (corresponding to the

rows of 2,3,5,6,9,11) and the second group (corresponding

to the rows of 1,7,10,13,14,17) are further generated in the

data set. Fig. 3 (a) and (d) show the extracted common and

distinct patterns detected by CD-NMF by setting different

values of kd and kc. It is interesting to notice that CD-

NMF allows finding all generated common and distinct

patterns effectively. More importantly, with different kd and

kc, the obtained common and distinct patterns are almost

the same. The only difference among these factorizations

is that common and distinct patterns are split into several

parts with the increase of kc and kd. Beyond, the number of

distinct patterns for each group, is automatically obtained.

Namely, the number distinct patterns for each group are

naturally obtained during the factorization process due to

the clustering constraint.

B. Evaluation on Real-world Data

Following the brain connectomes stated in Section III,

the joint structural connectivity map of major depression

and schizophrenia is obtained. Building upon the matrix,

we applied the CD-NMF algorithm to factorize it into four

sub-matrices with kd = 5 and kc = 10. We set α1 = 16
and α2 = 2 in this study. Fig. 5 plots the five distinct con-

nectivity patterns, where two connectivity patterns belong

to major depression and the remaining connectivity patterns

characterize the schizophrenia. Similarly, we plot five out of

ten common structural connectivity patterns shared by the

two disorders (see Fig. 4). It is interesting note that although

MDD and SZP shares many common ROIs, they have their

specific altered structural connectivity (see Fig. 5). These

common and specific changed structural connectivity, which

are highly consistent with the previous studies, such as [18].
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Figure 3: The common and distinct pattern discovery on a toy example. By specifying the parameters α1 and α2 with

suitable values, CD-NMF allows extracting all common and distinct patterns with different kd and kc.

Figure 4: Common structural connectivity patterns shared by major depression and schizophrenia. Due to space limitation,

only five of ten common patterns are displayed.

Figure 5: Distinct structural connectivity patterns between major depression and schizophrenia. Here, the first two plots

visualize the specific changed patterns in MDD and the rest plots correspond to the specific changes for SZP.

C. Prediction performance with distinct connectivity

To further evaluate whether the extract distinct connectiv-

ity patterns really characterize the discriminative information

of the two disorders, the prediction performance is reported

and also compared its performance to several represen-

tatives of discriminative feature representation techniques:

(1) the baseline support vector machine (SVM) with origi-

nal features; (2) the feature selection strategy (Information

Gain) [19]; (3) the wide-spread discriminant NMF: DNMF

[10]; (4) a local NMF representation with Fisher linear

discriminant analysis : FNMF [20]; (5) the popular semi-

supervised NMF: SSNMF [11]. The last three comparing

algorithms are also combined with SVM for prediction. For

all comparing algorithms, the best prediction performance is

reported. For FNMF, DNMF and SSNMF, due to the random

initialization (All comparing algorithms cannot produce their

best results with our initialization strategy, and thus the

random initialization is used.), all reported results are the

averaged classification accuracies over ten times. Fig. 6 plots

the classification accuracies of different algorithms for pre-

dicting the two disorders. From the plot, we can see that CD-

NMF shows its superiority over all comparing algorithms,

with more than 16% gained classification accuracy.

VI. CONCLUSION

In this paper, we propose a novel cluster-driven nonneg-

ative matrix factorization approach to discover the common

and distinct connectivity patterns between major depression

and schizophrenia. In contrast to existing ROI-based inves-

tigation in traditional neuroimaging data analysis, our new

approach, provides a new way to bring deep insight into the

two disorders at the network level. The high discriminative

power of derived distinct patterns, further demonstrates the

effectiveness of CD-NMF.
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